Sparse Generalised Kernel Modelling for Nonlinear Systems

S. Chen[†], X. Hong[‡], X.X. Wang[§] and C.J. Harris[†]

[†] School of ECS University of Southampton

[‡] Department of Cybernetics University of Reading

§ Neural Computing Group Aston University

Outline

Introduction

□ Generalised Kernel Modelling

□ A Sparse Model Construction Algorithm

- Orthogonal Forward Selection
- Leave-One-Out Criterion
- Repeated Weighted Boosting Search
- Modelling Results
- Conclusions

Nonlinear System Identification

• Modelling the nonlinear system

$$y_k = f(y_{k-1}, \cdots, y_{k-n_y}, u_{k-1}, \cdots, u_{k-n_u}; \theta) + e_k$$
$$= f(\mathbf{x}_k; \theta) + e_k$$

based on a set of N training input-output data $\{\mathbf{x}_k, y_k\}_{k=1}^N$

- u_k and y_k are the system input and output variables with n_u and n_y indicating the lags in the input and output, respectively
- θ is the unknown parameter vector associated with the system model structure yet to be determined
- $\mathbf{x}_k = [y_{k-1} \cdots y_{k-n_y} \ u_{k-1} \cdots u_{k-n_u}]^T$, and e_k is the system noise

Introduction

Existing Kernel Modellings

- Nonlinear optimisation to determine all the kernel centres, variances and weights
 - ↓ Local minimum and structure determination problems
- Clustering to determine kernel centres and variances
 - \Downarrow Structure determination problem
- Orthogonal Least Squares (OLS) forward selection, and sparse kernel methods, such as Support Vector Machine (SVM)
 - ♦ Select centres from data points and use cross validation to determine a single common kernel variance for every kernel basis

The Previous State-of-the-Art

- Model selection should be based on generalisation capability, rather than training performance, and Leave-One-Out (LOO) criterion is a measure of generalisation
- S. Chen, X. Hong, C.J. Harris and P.M. Sharkey, "Sparse modelling using orthogonal forward regression with PRESS statistic and regularisation," *IEEE Trans. Systems, Man and Cybernetics, Part B*, 34(2), 898–911, 2004
- This Locally Regularised OLS with LOO (LROLS-LOO) selects kernel centres from training data and adopts a single common kernel variance for every selected kernel

Introduction

Novelty of the Proposed Algorithm

- Extend to tunable kernels
 - Kernel centre is not restricted to training data, and each kernel has an individual diagonal covariance matrix
- Combine OLS / nonlinear optimisation
 - □ Orthogonal Forward Selection (OFS) to select kernels one by one
 - Each kernel is determined by nonlinear optimisation based on the LOO criterion
- This OFS-LOO algorithm enables
 - □ Enhanced modelling capability and sparser representation

Generalised Kernel Model

• Generalised kernel modelling of the training data $\{\mathbf{x}_k, y_k\}_{k=1}^N$

$$y_k = \hat{y}_k + e_k = \sum_{i=1}^M w_i g_i(\mathbf{x}_k) + e_k = \mathbf{g}^T(k)\mathbf{w} + e_k$$

where *M* is the number of kernels, $\mathbf{w} = [w_1 \cdots w_M]^T$ the kernel weight vector, and $\mathbf{g}(k) = [g_1(\mathbf{x}_k) \cdots g_M(\mathbf{x}_k)]^T$ the kernel regressors

• Generic kernel regressor

$$g_i(\mathbf{x}) = K\left(\sqrt{(\mathbf{x} - \mu_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \mu_i)}\right)$$

where μ_i is the *i*th kernel centre, $\Sigma_i = \text{diag}\{\sigma_{i,1}^2, \cdots, \sigma_{i,m}^2\}$ the *i*th diagonal kernel covariance matrix, $K(\bullet)$ the chosen kernel function

Orthogonal Decomposition

- The kernel model over the training set: y = Gw + e, where the regression matrix $G = [g_1 \cdots g_M]$
- Orthogonal decomposition: $\mathbf{G} = \mathbf{PA}$, where the orthogonal matrix $\mathbf{P} = [\mathbf{p}_1 \cdots \mathbf{p}_M]$ has orthogonal columns
- The regression model becomes: $y = P\theta + e$, with $\theta = Aw$
- The space spanned by the original model bases is identical to the space spanned by the orthogonal model bases, and thus

$$\hat{y}_k = \mathbf{g}^T(k)\mathbf{w} = \mathbf{p}^T(k)\theta$$

• $\mathbf{g}^T(k)$ is the *k*th row of **G** while \mathbf{g}_k is the *k*th column of **G**, and $\mathbf{p}^T(k)$ is the *k*th row of **P** while \mathbf{p}_k is the *k*th column of **P**

Leave-One-Out criterion

• The LOO mean square error for the n-term kernel model

$$J_n = \frac{1}{N} \sum_{k=1}^{N} \left(e_k^{(n,-k)} \right)^2 = \frac{1}{N} \sum_{k=1}^{N} \left(\frac{e_k^{(n)}}{\eta_k^{(n)}} \right)^2$$

where $e_k^{(n,-k)}$ is the LOO modelling error, $e_k^{(n)}$ the usual modelling error, and $\eta_k^{(n)}$ the LOO weighting

• Computing the LOO criterion is very efficient, since

$$e_{k}^{(n)} = y_{k} - \sum_{i=1}^{n} \theta_{i} p_{i}(k) = e_{k}^{(n-1)} - \theta_{n} p_{n}(k)$$

$$\eta_{k}^{(n)} = 1 - \sum_{i=1}^{n} \frac{p_{i}^{2}(k)}{\mathbf{p}_{i}^{T} \mathbf{p}_{i} + \lambda} = \eta_{k}^{(n-1)} - \frac{p_{n}^{2}(k)}{\mathbf{p}_{n}^{T} \mathbf{p}_{n} + \lambda}$$

where $\lambda \geq 0$ is a small regularisation parameter

OFS-LOO Algorithm

• The algorithm constructs kernels one by one, i.e. at the *n*th stage, determines the *n*th kernel by minimising J_n

 $\min_{\mu_n, \boldsymbol{\Sigma}_n} J_n(\mu_n, \boldsymbol{\Sigma}_n)$

• J_n is at least locally convex, i.e. there exists an M such that

 $J_{n-1} > J_n$ if $n \le M$ and $J_M < J_{M+1}$

- The construction procedure is terminated automatically, and the user does not need to specify any learning algorithmic parameter
- After construction, the LROLS-LOO can be called to optimise regularisation parameters and to further reduce the model size M

Position and Shape Kernel

• Determine the *n*th kernel centre μ_n and covariance matrix Σ_n by minimising $J_n(\mu_n, \Sigma_n)$ is a nonconvex nonlinear optimisation

□ Gradient-based techniques may be trapped at a local minimum

- □ Global optimisation techniques are preferred, e.g. genetic algorithm
- We adopt a simple yet efficient global search algorithm called the Repeated Weighted Boosting Search (RWBS) to perform this task
- S. Chen, X.X. Wang and C.J. Harris, "Experiments with repeating weighted boosting search for optimisation in signal processing applications," *IEEE Trans. Systems, Man and Cybernetics, Part B*, 35(4), 682-693, 2005

RWBS for Minimising $J(\mathbf{u})$

Outer Loop: N_G number of generations

Initialisation: Keep the best solution found in the previous generation as \mathbf{u}_1 and randomly choose rest of the population $\mathbf{u}_2, \cdots, \mathbf{u}_{P_S}$

Inner Loop: N_I iterations

Perform a convex combination

$$\mathbf{u}_{P_S+1} = \sum_{i=1}^{P_S} \delta_i \mathbf{u}_i$$
 where $\delta_i \ge 0$ and $\sum_{i=1}^{P_S} \delta_i = 1$

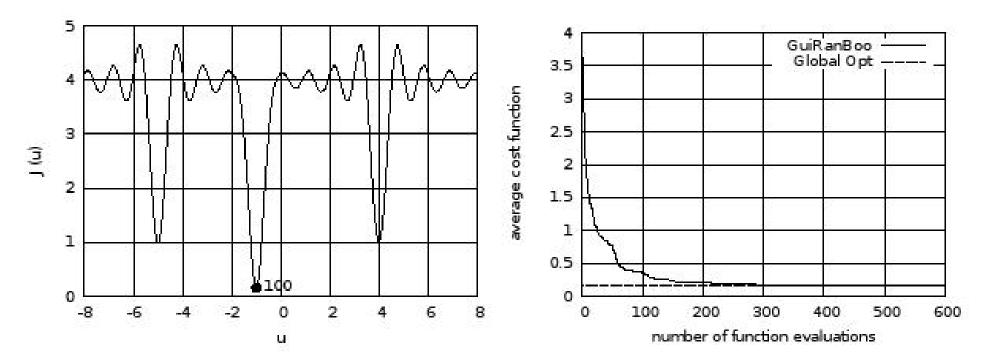
- The weightings δ_i are adapted by boosting to reflect goodness of \mathbf{u}_i
- \mathbf{u}_{P_S+1} or its mirror image replaces the worst member in the population *End of Inner Loop*

End of Outer Loop

Optimisation Example

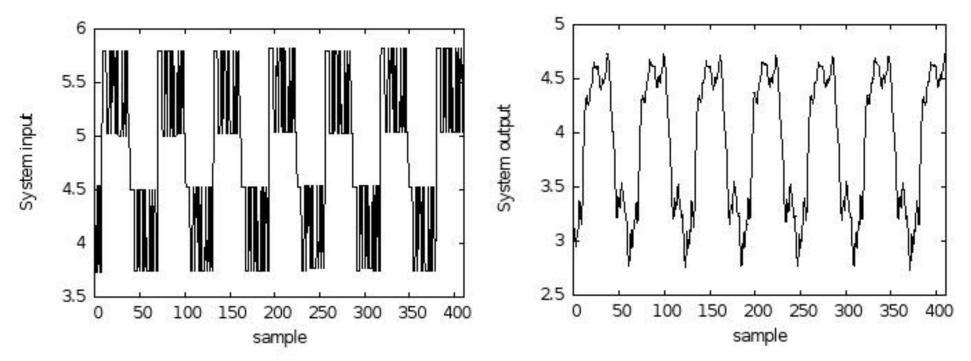
Population size $P_S = 6$, number of inner iterations $N_I = 20$ and number of generations $N_G = 12$

100 random experiments, populations in all the 100 runs converge to the global minimum



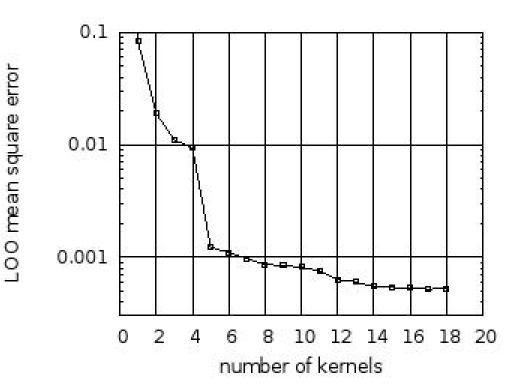
Engine Data

Modelling the relationship between the fuel rack position (input u_k) and the engine speed (output y_k) for a Leyland TL11 turbocharged, direct injection diesel engine Data set contains 410 pairs of input-output samples, modelled as $y_k = f(\mathbf{x}_k) + e_k$ with $\mathbf{x}_k = [y_{k-1} \ u_{k-1} \ u_{k-2}]^T$, first 210 data points for training and last 200 points for testing



Engine Data Modelling

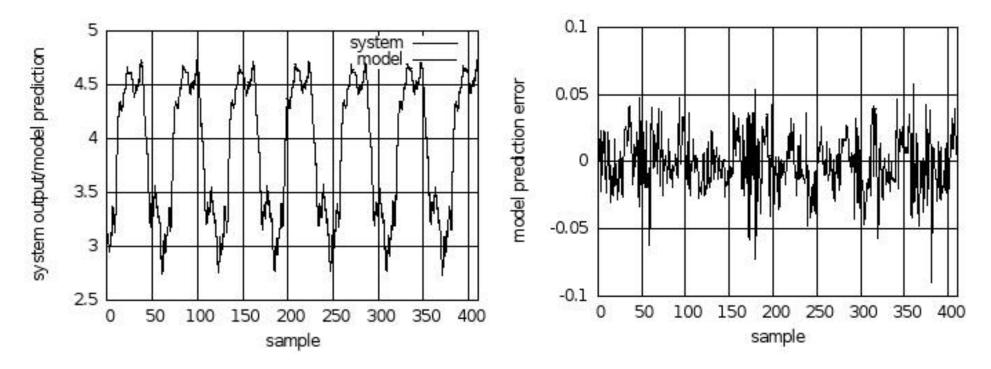
- The OFS-LOO using Gaussian kernels
 - The LOO mean square error as a function of model size for the engine data set
 - The OFS-LOO constructed
 17 kernels
 - The LROLS-LOO reduced the model to 15 kernels



• The SVM and LROLS-LOO were also used for comparison

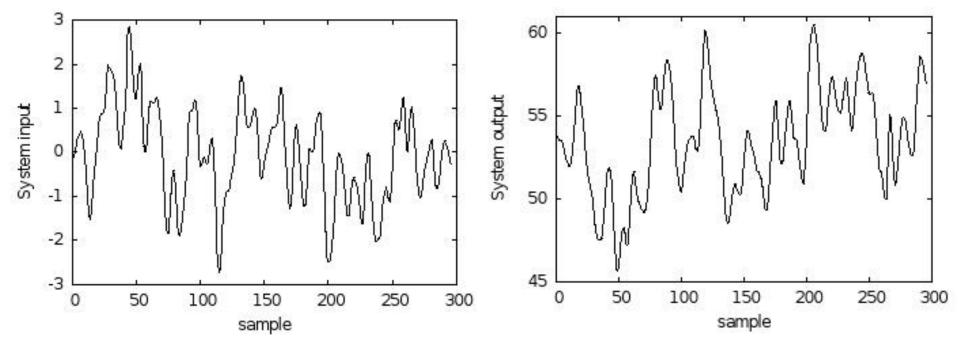
Engine Data Results

algorithm	kernel type	model size training MSE		test MSE
SVM	fixed Gaussian	92 0.000447		0.000498
LROLS-LOO	fixed Gaussian	22	0.000453	0.000490
OFS-LOO	tunable Gaussian	15	0.000466	0.000480



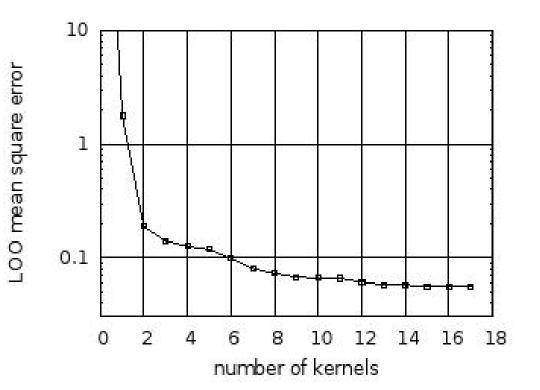
Gas Furnace Data

Modelling the relationship between the coded input gas feed rate (input u_k) and the CO₂ concentration (output y_k) for a gas furnace data set Data set contains 296 pairs of input-output samples, modelled as $y_k = f(\mathbf{x}_k) + e_k$ with $\mathbf{x}_k = [y_{k-1} \ y_{k-2} \ y_{k-3} \ u_{k-1} \ u_{k-2} \ u_{k-3}]^T$, all the data points for training



Gas Furnace Modelling

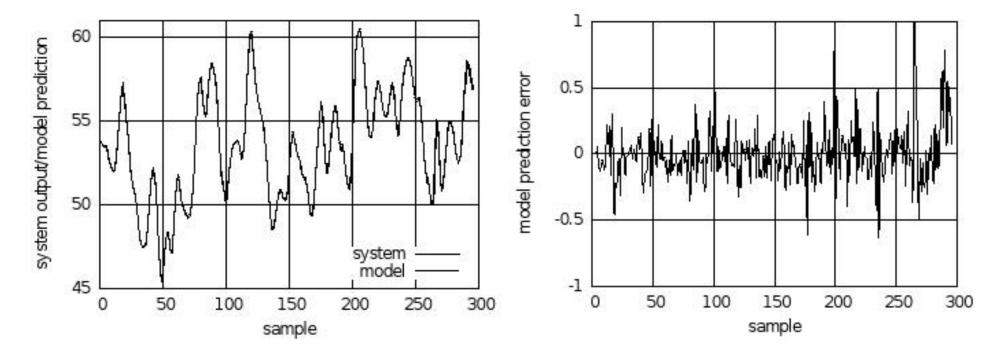
- The OFS-LOO using Gaussian kernels
 - The LOO mean square error as a function of model size for the gas furnace data set
 - The OFS-LOO constructed
 16 kernels
 - The LROLS-LOO reduced the model to 15 kernels



• The SVM and LROLS-LOO were also used for comparison

Gas Furnace Results

algorithm	kernel type model size training MSE		LOO MSE	
SVM	fixed Gaussian 62 0.052416		0.052416	0.054376
LROLS-LOO	fixed thin-plate-spline	28	0.053306	0.053685
OFS-LOO	tunable Gaussian	15	0.054306	0.054306



Boston Housing Data

- Boston Housing: http://www.ics.uci.edu/~mlearn/MLRepository.html
 - Data set comprises 506 data points with 14 variables
 - Predicting the median house value from the remaining 13 attributes
- Modelling: randomly selected 456 data points from the data set for training and used the remaining 50 data points to form test set
 - Average results were given over 100 repetitions
- The SVM, LROLS-LOO and OFS-LOO algorithms using Gaussian kernels

algorithm	kernel type	model size	training MSE	test MSE
SVM	fixed	243.2 ± 5.3	6.7986 ± 0.4444	23.1750 ± 9.0459
LROLS-LOO	fixed	58.6 ± 11.3	12.9690 ± 2.6628	17.4157 ± 4.6670
OFS-LOO	tunable	34.6 ± 8.4	$\boldsymbol{10.0997 \pm 3.4047}$	14.0745 ± 3.6178

Conclusions

Conclusions

- A construction algorithm has been proposed for nonlinear system identification using the generalised kernel model
 - The algorithm has ability to tune the centre and covariance matrix of individual kernel to minimise the leave-one-out error
 - A global search algorithm is used to construct the generalised kernel model in an orthogonal forward selection procedure
 - The model construction procedure is fully automatic and user does not need to specify any learning algorithmic parameter
- It offers enhanced modelling capability with sparser representation

S. Chen wish to thank the support of the United Kingdom Royal Academy of Engineering.

