CDC 2006 Presentation

Optimal Controller Realisations with the Smallest Dynamic Range

J. Wu^{\dagger} , S. Chen[‡], G. Li[§] and J. Chu[†]

[†] National Key Laboratory of Industrial Control Technology Zhejiang University, Hangzhou 310027, P. R. China

[‡] School of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, UK

[§] School of Electrical and Electronic Engineering Nanyang Technological University, Singapore

- □ Motivation for optimal **finite word length** controller design with the smallest **dynamic range**
- □ The proposed two-stage approach for solving this **multi-objective** optimal FWL controller design
- Numerical experimental investigation of the proposed technique

- □ FWL effect may degrade designed closed-loop performance, and this problem is particularly serious in **fixed-point** implementation
- □ Care must be exercised in implementing or **realising** designed control law so as to minimise FWL effect
- □ Most existing techniques are based on maximising some FWL closedloop stability measures \Rightarrow far from "optimal":
 - ☆ In fixed-point implementation, total available bits have to accommodate dynamic range or integer part, and remaining bits left are then used to implement precision or fractional part
 - ☆ Optimising a FWL closed-loop stability measure, while minimising fractional bit length, may not guarantee a small dynamic range

- □ Normalising with l_2 -norm will minimise **integer bit length** but may not guarantee adequate FWL closed-loop stability robustness
- ☐ True optimal FWL controller design is computationally challenging **multi-objective** optimisation
 - ☆ Simultaneously maximise a FWL closed-loop stability measure and minimise a dynamic rage measure
- □ Our previous work: optimising **combined** FWL closed-loop stability measure and dynamic-range measure

"A unified closed-loop stability measure for finite-precision digital controller realizations implemented in different representation schemes," IEEE Trans. Automatic Control, 48, pp.816–822, 2003

Proposed Approach

□ **True** optimal controller realisation: Simultaneously achieves maximum robustness of FWL closed-loop stability and minimum dynamic range

We propose a computationally attractive two-step approach to solve this challenging multi-objective optimisation

□ **Step one**: Maximise FWL closed-loop stability measure

- ☆ Assuming sufficient integer bit length to avoid overflow, resulting realisation achieves maximum robustness of FWL closed-loop stability
- \checkmark We know great deal how to do this
- \Rightarrow Solution is an infinite set of controller realisations
- □ Step two: Search solution set of optimal FWL closed-loop stability to yield a realisation that has a minimum integer bit length

System Model

Discrete-time closed-loop system with generalised operator ρ

State-space description of **plant** \hat{P}

$$\begin{cases} \rho \mathbf{x}(k) = \mathbf{A}_{\rho} \mathbf{x}(k) + \mathbf{B}_{\rho} \mathbf{e}(k) \\ \mathbf{y}(k) = \mathbf{C}_{\rho} \mathbf{x}(k) \end{cases}$$

 $\mathbf{A}_{\rho} \in \mathcal{R}^{n \times n}, \, \mathbf{B}_{\rho} \in \mathcal{R}^{n \times p} \text{ and } \mathbf{C}_{\rho} \in \mathcal{R}^{q \times n}$

 \Box State-space description of **controller** \hat{C}

$$\begin{cases} \rho \mathbf{v}(k) = \mathbf{F}_{\rho} \mathbf{v}(k) + \mathbf{G}_{\rho} \mathbf{y}(k) + \mathbf{H}_{\rho} \mathbf{e}(k) \\ \mathbf{u}(k) = \mathbf{J}_{\rho} \mathbf{v}(k) + \mathbf{M}_{\rho} \mathbf{y}(k) \end{cases}$$

 $\mathbf{F}_{\rho} \in \mathcal{R}^{m \times m}, \, \mathbf{G}_{\rho} \in \mathcal{R}^{m \times q}, \, \mathbf{J}_{\rho} \in \mathcal{R}^{p \times m}, \, \mathbf{M}_{\rho} \in \mathcal{R}^{p \times q} \text{ and } \mathbf{H}_{\rho} \in \mathcal{R}^{m \times p}$

 \Box \hat{C} includes **output** feedback, full-order observer-based, and reduced-order observer-based controllers

CDC 2006

□ Given initial realisation $(\mathbf{F}_{\rho 0}, \mathbf{G}_{\rho 0}, \mathbf{J}_{\rho 0}, \mathbf{M}_{\rho 0}, \mathbf{H}_{\rho 0})$ by standard controller design, all realisations of \hat{C} form **realisation set**

$$\begin{aligned} \mathcal{S}_{\rho} &= \{ (\mathbf{F}_{\rho}, \mathbf{G}_{\rho}, \mathbf{J}_{\rho}, \mathbf{M}_{\rho}, \mathbf{H}_{\rho}) : \mathbf{F}_{\rho} = \mathbf{T}_{\rho}^{-1} \mathbf{F}_{\rho 0} \mathbf{T}_{\rho}, \mathbf{G}_{\rho} = \mathbf{T}_{\rho}^{-1} \mathbf{G}_{\rho 0}, \\ \mathbf{J}_{\rho} = \mathbf{J}_{\rho 0} \mathbf{T}_{\rho}, \mathbf{M}_{\rho} = \mathbf{M}_{\rho 0}, \mathbf{H}_{\rho} = \mathbf{T}_{\rho}^{-1} \mathbf{H}_{\rho 0} \} \end{aligned}$$

 $\mathbf{T}_{\rho} \in \mathcal{R}^{m \times m}$ is any real-valued nonsingular **transformation** matrix \square We can also write a controller realisation in vector form

$$\mathbf{w}_{\rho} = \left[\operatorname{Vec}^{T}(\mathbf{F}_{\rho}) \operatorname{Vec}^{T}(\mathbf{G}_{\rho}) \operatorname{Vec}(\mathbf{J}_{\rho}) \operatorname{Vec}^{T}(\mathbf{M}_{\rho}) \operatorname{Vec}^{T}(\mathbf{H}_{\rho}) \right]^{T}$$

□ **Transition matrix** of closed-loop system

$$\overline{\mathbf{A}}(\mathbf{w}_{
ho}) = egin{bmatrix} \mathbf{A}_{
ho} + \mathbf{B}_{
ho} \mathbf{M}_{
ho} \mathbf{C}_{
ho} & \mathbf{B}_{
ho} \mathbf{J}_{
ho} \ \mathbf{G}_{
ho} \mathbf{J}_{
ho} \end{bmatrix} = egin{bmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{0} & \mathbf{T}_{
ho}^{-1} \end{bmatrix} \overline{\mathbf{A}}(\mathbf{w}_{
ho0}) egin{bmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{0} & \mathbf{T}_{
ho} \end{bmatrix}$$

whose **eigenvalues** are $\lambda_i = \lambda_i(\overline{\mathbf{A}}(\mathbf{w}_{\rho})), \forall i \in \{1, \cdots, m+n\}$

- □ **Fixed-point** format of bit length $b = 1 + b_g + b_f$: one bit for **sign**, b_g bits for **integer part**, and b_f bits for **fractional part**
- \Box Assume b_g is sufficient so **no overflow** occurs, i.e.

$$\|\mathbf{w}_{\rho}\|_{M} \le 2^{b_{g}}$$

where $\|\mathbf{U}\|_M$ denotes maximum absolute element of matrix \mathbf{U}

- \Box In FWL implementation, \mathbf{w}_{ρ} is perturbed into $\mathbf{w}_{\rho} + \Delta$ due to **finite** b_f
 - \Rightarrow With **perturbation** Δ , $\lambda_i(\overline{\mathbf{A}}(\mathbf{w}_{\rho}))$ moves to $\lambda_i(\overline{\mathbf{A}}(\mathbf{w}_{\rho} + \Delta))$
 - ☆ Will $\overline{\mathbf{A}}(\mathbf{w}_{\rho} + \boldsymbol{\Delta})$ remain stable?
 - ☆ Under condition of no overflow, **closed-loop stability** depends only on Δ , i.e. **precision** of fractional part representation
- □ We want a controller realisation \mathbf{w}_{ρ} whose closed-loop stability has maximum robustness to controller perturbation Δ

 $\hfill\square$ Optimal FWL realisation problem

$$\nu = \min_{\mathbf{w}_{\rho} \in \mathcal{S}_{\rho}} f(\mathbf{w}_{\rho})$$

 \Box with Frobenius-norm $\|\bullet\|_F$, FWL closed-loop stability measure

$$f(\mathbf{w}_{\rho}) = \max_{i \in \{1, \cdots, m+n\}} \frac{\left\| \frac{\partial \lambda_i}{\partial \mathbf{w}_{\rho}} \right\|_F}{SM(\lambda_i)}$$

Stability margin of $\lambda_i(\overline{\mathbf{A}}(\mathbf{w}_{\rho}))$

$$SM(\lambda_i(\overline{\mathbf{A}}(\mathbf{w}_{\rho}))) = \begin{cases} 1 - |\lambda_i(\overline{\mathbf{A}}(\mathbf{w}_z))|, & \text{if } \rho = z \\ \frac{1}{h} - |\lambda_i(\overline{\mathbf{A}}(\mathbf{w}_{\delta})) + \frac{1}{h}|, & \text{if } \rho = \delta \end{cases}$$

 \Box Note this says nothing about $\|\mathbf{w}_{\rho}\|_{M}$ or **dynamic range** of \mathbf{w}_{ρ}

CDC 2006

☐ An **optimal realisation** solution $\mathbf{w}_{\rho \text{opt}}$, i.e. $(\mathbf{F}_{\rho \text{opt}}, \mathbf{G}_{\rho \text{opt}}, \mathbf{J}_{\rho \text{opt}}, \mathbf{M}_{\rho \text{opt}})$, $\mathbf{H}_{\rho \text{opt}}$), can readily be obtained using algorithm of

"A search algorithm for a class of optimal finite-precision controller realization problems with saddle points," SIAM J. Control and Optimization, 44, pp.1787–1810, 2005

□ This actually defines **optimal solution set** $\mathbf{w}_{\rho \text{opt}}(\mathbf{V})$, where $\mathbf{V} \in \mathcal{R}^{m \times m}$ is an arbitrary **orthogonal matrix**, i.e.

$$\mathcal{S}_{\rho \text{opt}} = \{ (\mathbf{F}_{\rho}, \mathbf{G}_{\rho}, \mathbf{J}_{\rho}, \mathbf{M}_{\rho}, \mathbf{H}_{\rho}) : \mathbf{F}_{\rho} = \mathbf{V}^{-1} \mathbf{F}_{\rho \text{opt}} \mathbf{V}, \mathbf{G}_{\rho} = \mathbf{V}^{-1} \mathbf{G}_{\rho \text{opt}},$$

$$\mathbf{J}_{\rho} = \mathbf{J}_{\rho \text{opt}} \mathbf{V}, \mathbf{M}_{\rho} = \mathbf{M}_{\rho \text{opt}}, \mathbf{H}_{\rho} = \mathbf{V}^{-1} \mathbf{H}_{\rho \text{opt}}, \mathbf{V} \in \mathcal{R}^{m \times m}, \mathbf{V}^{T} \mathbf{V} = \mathbf{I} \}$$

□ Any $\mathbf{w}_{\rho \text{opt}}(\mathbf{V})$ in $\mathcal{S}_{\rho \text{opt}}$ is a solution of optimal FWL realisation problem, but different $\mathbf{w}_{\rho \text{opt}}(\mathbf{V})$ have different **dynamic range** $\|\mathbf{w}_{\rho \text{opt}}(\mathbf{V})\|_M$

 \Box Search $S_{\rho opt}$ for a realisation with smallest dynamic range

$$\mu = \min_{\substack{\mathbf{v} \in \mathcal{R}^{m \times m} \\ \mathbf{v}^T \mathbf{v} = \mathbf{I}}} d(\mathbf{w}_{\rho \text{opt}}(\mathbf{V}))$$

where $d(\mathbf{w}_{\rho}) = \|\mathbf{w}_{\rho}\|_{M}$ is **dynamic range** of \mathbf{w}_{ρ}

□ Using Givens rotation with $r = \frac{m(m-1)}{2}$ and $\theta_i \in [-\pi, \pi), 1 \le i \le r$

$$d_1(\theta_1, \cdots, \theta_r) = d(\mathbf{w}_{\rho \text{opt}}(\mathbf{V}))$$

 \Box Using optimisation algorithm relying on function value only to solve

$$\mu = \min_{\theta_1, \cdots, \theta_r \in [-\pi, \pi)} d_1(\theta_1, \cdots, \theta_r)$$

With optimal solution $\theta_{1\text{opt}}, \dots, \theta_{r\text{opt}} \Rightarrow \mathbf{V}_{\text{opt}} \Rightarrow \mathbf{w}_{\rho\text{opt1}} = \mathbf{w}_{\rho\text{opt}}(\mathbf{V}_{\text{opt}}),$ optimal realisation with smallest dynamic range

- Example from M. Gevers and G. Li, Parameterizations in Control, Estimation and Filtering Problems: Accuracy Aspects. London: Springer Verlag, 1993
- □ Plant \hat{P} has order n = 4, controller \hat{C} is output feedback one with order m = 4
- \Box Initial controller realisation provided is denoted by $\mathbf{w}_{\rho 0}$
- □ **Optimal** FWL controller realisation obtained by optimising FWL closedloop stability measure alone is denoted by $\mathbf{w}_{\rho opt}$
- □ Proposed **optimal** FWL controller realisation with **smallest** dynamic range is denoted by $\mathbf{w}_{\rho opt1}$

Results

 $\hfill\square$ Comparison of three realisations using z operator

Realisation	$f(\mathbf{w}_z)$	$d(\mathbf{w}_z)$	b_f^{\min}	b_g^{\min}	b^{\min}
\mathbf{w}_{z0}	3.9697e + 6	1.0959e + 6	20	21	42
$\mathbf{w}_{z\mathrm{opt}}$	2.4246e + 3	1.9673e + 2	8	8	17
$\mathbf{w}_{z\mathrm{opt1}}$	2.4246e + 3	1.1799e + 2	8	7	16

 \square Comparison of three realisations using δ operator with $h=2^{-14}$

Realisation	$f(\mathbf{w}_{\delta})$	$d(\mathbf{w}_{\delta})$	b_f^{\min}	b_g^{\min}	b^{\min}
$\mathbf{w}_{\delta 0}$	2.7712e + 5	1.7956e + 10	15	35	51
$\mathbf{w}_{\delta \mathrm{opt}}$	3.3740e - 1	5.1236e + 4	-4	16	13
$\mathbf{w}_{\delta \mathrm{opt1}}$	3.3740e - 1	2.5810e + 4	-4	15	12

"-4 fractional bits": entire fractional part and first lowest 4-bit integer part are omitted

True Optimal Design

Comparison of $\mathbf{w}_{\delta \text{opt1}}$ under different h											
h	$f(\mathbf{w}_{\delta ext{opt1}})$	$d(\mathbf{w}_{\delta ext{opt1}})$	b_f^{\min}	b_g^{\min}	b^{\min}	2-7	1.9248e + 1	1.3349e + 3	1	11	13
2^{10}	2.4825e + 6	3.6871e + 0	18	2	21	2^{-8}	9.7758e + 0	1.8878e + 3	0	11	12
2^{9}	1.2413e + 6	5.2144e + 0	17	3	21	2^{-9}	5.0361e + 0	2.6698e + 3	-1	12	12
2^{8}	6.2063e + 5	7.3743e + 0	16	3	20	2^{-10}	2.6601 e + 0	$\mathbf{3.7756e} + 3$	-2	12	11
2^{7}	3.1032e + 5	1.0429e + 1	15	4	20	2^{-11}	$\mathbf{1.4618e} + 0$	$\mathbf{5.3396e} + 3$	-3	13	11
2^{6}	1.5516e + 5	1.4749e + 1	14	4	19	2^{-12}	8.4740e - 1	7.6314 e + 3	-3	13	11
2^5	7.7579e + 4	2.0858e + 1	13	5	19	2^{-13}	5.2102e - 1	1.2905e + 4	-3	14	12
2^4	3.8790e + 4	2.9497e + 1	12	5	18	2^{-14}	3.3740e - 1	2.5810e + 4	-4	15	12
2^3	1.9395e + 4	4.1715e + 1	11	6	18	2^{-15}	2.2681e - 1	5.1621e + 4	-5	16	12
2^{2}	9.6977e + 3	5.8994e + 1	10	6	17	2^{-16}	1.5606e - 1	1.0324e + 5	-6	17	12
2^1	4.8490e + 3	8.3431e + 1	9	7	17	2^{-17}	1.0879e - 1	2.0648e + 5	-6	18	13
$\mathbf{2^0}$	2.4246 e + 3	$\mathbf{1.1799e} + 2$	8	7	16	2^{-18}	7.6367e - 2	4.1297e + 5	-6	19	14
2^{-1}	1.2125e + 3	1.6686e + 2	7	8	16	2^{-19}	5.3801e - 2	8.2593e + 5	-7	20	14
2^{-2}	6.0639e + 2	2.3598e + 2	6	8	15	2^{-20}	3.7973e - 2	1.6519e + 6	-7	21	15
2^{-3}	3.0335e + 2	3.3372e + 2	5	9	15	2^{-21}	2.6826e - 2	3.3037e + 6	-8	22	15
2^{-4}	1.5183e + 2	4.7195e + 2	4	9	14	2^{-22}	1.8960e - 2	6.6075e + 6	-8	23	16
2^{-5}	7.6071e + 1	6.6744e + 2	3	10	14	2^{-23}	1.3404e - 2	1.3215e + 7	-9	24	16
2^{-6}	3.8190e + 1	9.4391e + 2	2	10	13	2^{-24}	9.4767e - 3	2.6430e + 7	-9	25	17

There exist optimal values of h for the δ operator \Rightarrow resulting optimal controller

realisations $w_{\delta {\rm opt1}}$ achieve maximum robustness to FWL errors

- □ A two-step approach to design optimal **fixed-point** digital controller realisations, which is **multi-objective** optimisation problem
 - ☆ Step one: find an optimal realisation by minimising FWL closed-loop stability measure
 - ☆ Step two: modifying this realisation to produce optimal realisation with smallest dynamic range
- □ Approach developed within **unified** framework that includes both shift and delta operator parameterisations of **generic** controller structure
- □ With appropriate h, optimal δ -operator realisation has much better **FWL closed-loop stability** characteristics than optimal z-operator one

THANK YOU.

S. Chen wish to thank the support of the United Kingdom Royal Academy of Engineering

