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Fragility Problem

Control system designed by maximising its robustness to
plant uncertainty alone may exhibit poor stability margin
with respect to controller coefficient perturbation

Two types of finite word length errors in controller
implementation are:

Rounding errors that occur in arithmetic operations, and

Controller parameter representation errors

These two types of errors are typically investigated
separately for mathematical tractability

We consider second type of FWL errors, which has
critically influence on close-loop stability
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Existing Approaches

Two strategies for considering FWL controller parameter
representation errors

Indirect approach: search for an “optimal” realisation of the
given controller that is most robust to FWL errors
Direct approach: design controller realisation by
considering both robust control criteria and FWL errors

In literature, direct approach is also referred to as
non-fragile, defragile or resilient control

Some works assume controller parameter perturbation
block is 2-norm bounded
More realistic ones assume parameter perturbation is
independent and magnitude bounded

Yang et al. [20] design robust FWL H2 controller by
considering all vertices of FWL perturbation hypercube
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Our Contributions

With similar hypothesis to Yang et al. [20], we study robust FWL
H∞ output feedback controller, and our contributions are

FWL robust control performance measure is proposed,
which takes into account robust control requirements and
FWL effects on controller implementation

Robust FWL controller design problem is naturally
formulated as a mixed µ problem which can be solved
effectively with the aid of mixed µ theory

Our proposed method is computationally more attractive
than Yang et al. [20]
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Plant Model

Plant is described by known nominal model P̂g(w) and unknown
but bounded structured uncertainty Û(w), where w ∈ C

P̂g(w) is given as

xP(k + 1) = APxP(k) + Bv v(k) + Bw w(k) + BPuP(k)
h(k) = ChxP(k)D1,1v(k) + D1,2w(k)
z(k) = CzxP(k) + D2,1v(k) + D2,2w(k) + D2,3uP(k)

yP(k) = CPxP(k) + D3,2w(k)

xP(k) ∈ Rn: state, v(k) ∈ Rn1 : uncertainty-linked input,
w(k) ∈ Rn2 : external disturbance input, uP(k) ∈ Rs: control
input, h(k) ∈ Rn1 : uncertainty-linked output, z(k) ∈ Rn2 :
controlled output, yP(k) ∈ Rt : measured output

P̂g(w) connects with Û(w) through h and v

v = Û(w)h
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Structured Uncertainty

Unknown structured uncertainty Û(w) takes the form

Û(w) = diag
(

Û1(w), · · · , Ûb+d (w)
)

where Ûi(w) = ϕi(w)Ipi with ϕi(w) ∈ C, ∀w ∈ C, ∀i ∈ {1, · · · , b};
and Ûi(w) ∈ Cpi×pi , ∀w ∈ C, ∀i ∈ {b + 1, · · · , b + d}, while

b+d∑
i=1

pi = n1, pi ≥ 1

Given a constant τ > 0, Û(w) is included in the set

Hτ
4
=

{
Û(w)

∣∣∣∣∣ Û(w) = diag
(

Û1(w), · · · , Ûb+d (w)
)

Û(w) ∈ F , Û(w) is stable, ‖Û(w)‖∞ < τ

}

with F : the set of all causal finite linear time-invariant systems
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Controller

Controller Ĉ(w) of mth-order is described by

xC(k + 1) = ACxC(k) + BCyP(k)
uP(k) = CCxC(k) + DCyP(k)

and the controller is also denoted by its parameters as

X 4
=

[
DC CC
BC AC

]
∈ R(s+m)×(t+m)

X is perturbed to X + ∆ due to FWL fixed-point implementation,
with ∆ belonging to the hypercube

Dβ
4
= {∆ | ∆ ∈ R(s+m)×(t+m), ‖∆‖m ≤ β}

where 0 ≤ β ∈ R is the maximum representation error, ∆ =
[
δi,j

]
and ‖∆‖m = max

i,j
|δi,j |
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Closed-Loop System

Closed-loop system, which consists of P̂g(w), Û(w), X and Λ, is
denoted as Φ̂(w , Û(w), X,Λ), where Λ is equivalent to ∆ as

Λ
4
= diag

(
δ1,1, δ2,1, · · · , δs+m,1, δ1,2, · · · , δ1,t+m, · · · , δs+m,t+m

)
Λ ∈ Oβ

4
= {Q

∣∣ Q ∈ RN×N , Q is diagonal, σ̄(Q) ≤ β}

with σ̄(Q) denoting the maximum singular value of Q

Further denote the closed-loop transfer function from w(k) to
z(k) by Φ̂wz(w , Û(w), X,Λ)

For 0 < ξ ∈ R, the set of all mth-order robust H∞ controllers,
which do not consider FWL effect, is defined by

Xm
4
=

{
X

∣∣∣∣ X ∈ R(s+m)×(t+m), Φ̂(w , Û(w), X, 0) is stable,
∀Û(w) ∈ Hτ , ‖Φ̂wz(w , Û(w), X, 0)‖∞ ≤ ξ

}
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Theoretical Measure

For a controller X ∈ Xm, the FWL robust measure

υ(X)
4
= sup

0≤β∈R

{
β

∣∣∣∣ ∀Û(w) ∈ Hτ , Φ̂(w , Û(w), X,Λ) is stable,
∀Λ ∈ Oβ , ‖Φ̂wz(w , Û(w), X,Λ)‖∞ ≤ ξ

}
charaterises “robustness” of X to controller perturbation Λ

Hτ is the set of structured uncertainty
Oβ defines FWL perturbation hypercube
Φ̂(w , Û(w), X,Λ) is the whole closed-loop system
Φ̂wz(w , Û(w), X,Λ) is the closed-loop transfer function from
external perturbation input w(k) to controlled output z(k)

However, how to compute the value of υ(X) is unknown

With aid of mixed µ theorem, we derive a tractable lower bound
for υ(X)
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Mixed µ

“Substitute out” Û(w) from Φ̂(w , Û(w), X,Λ) ⇒ composite
system of P̂g(w), X and Λ, described by:

xPC(k + 1) =
(
A(X) + BuΛCu

)
xPC(k) + Bv v(k) + B(X)w(k)

h(k) = ChxPC(k) + D1,1v(k) + D1,2w(k)

z(k) = C(X)xPC(k) + D2,1v(k) + D(X)w(k)

Define the matrix

Θ(X, β)
4
=


A(X) Bu Bv B(X)
βCu 0 0 0
τCh 0 τD1,1 τD1,2

1
ξ C(X) 0 1

ξ D2,1
1
ξ D(X)


and the related set of allowable perturbations Kθ

We can obtain a computable mixed µ: αKθ
(Θ(X, β))
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Tractable Measure

Result: ∃ 0 ≤ β ∈ R such that αKθ
(Θ(X, β)) < 1, then X ∈ Xm

and ∀Û(w) ∈ Hτ , ∀Λ ∈ Oβ

Φ̂(w , Û(w), X,Λ) is stable, ‖Φ̂wz(w , Û(w), X,Λ)‖∞ ≤ ξ

Define a subset of Xm as

X̃m
4
= {X | X ∈ R(s+m)×(t+m), αKθ

(Θ(X, 0)) < 1}

For X ∈ X̃m, the FWL robust measure

υ̃(X)
4
= sup

0≤β∈R
{β | αKθ

(Θ(X, β)) < 1}

is a lower bound of υ(X)

υ̃(X) can be computed using combined linear matrix inequality
technique and bisection search
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Design Problem

Robust FWL controller design: given P̂g(w), τ , ξ, m and
nonempty X̃m, find a controller Xopt ∈ X̃m that achieves

γ = sup
X∈ eXm

υ̃(X)

This design makes the FWL tolerance as large as possible,
while satisfying a suboptimal robust control requirement

This robust FWL controller design can be solved with aid of
bilinear matrix inequality

Complexity comparison with Yang et al. [20]

Our FWL robust H∞ controller design solves one BMI of
size 2(n + m + N + n1 + n2)

FWL robust H2 controller design [20] requires to solve at
least 2N BMIs of size no less than 4n
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Design Problem

Nominal plant model P̂g(w) is given by

P̂0(w) =
3.3750× 10−3w + 1.3669× 10−2w2 + 3.4605× 10−3w3

1− 3.0488w + 3.1001w2 − 1.0513w3
,

Ŵ1(w) =
4.9875× 10−3w

1− 9.9501× 10−1w
, Ŵ2(w) =

5.8512× 10−1w − 5.5933× 10−1w2

1− 1.3390w + 3.7908× 10−1w2

Plant model uncertainty Û(w) ∈ Hτ with τ = 0.4
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Design Solution

Constant that bounds closed-loop H∞ norm from w to z was set
to ξ = 0.3, and controller order was chosen to be m = 2

Solving optimal FWL robust design problem yields the controller

Xopt1 =

 −103.44 −15.600 −1.4984
−16.070 −1.4261 0.25055
−19.469 −3.0400 0.37517


with υ̃(Xopt1) = 8.2842× 10−3

For any FWL perturbation to Xopt1 smaller than 8.2842× 10−3

and for any Û(w) ∈ Hτ with τ = 0.4,

the closed-loop system maintains stability, and
closed-loop H∞ norm from w to z is always less than 0.3
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Bit Length Estimate

Using fixed point processor of c-bit length to implement X, c bits
are assigned as:

1 sign bit, cint bits for integer part, cfra bits for fraction part

To guarantee dynamic range of X, cint = dlog2 ‖X‖me,

Fraction bit length bounds the absolute values of FWL errors by
2−(cfra+1), and to maintain closed-loop performance, at least

cfra = d− log2 υ̃(X)e − 1

Minimal bit length guaranteeing closed-loop performance,
estimated based on υ̃(X), is

c̃(X)
4
= dlog2 ‖X‖me+ d− log2 υ̃(X)e

In this example, c̃(Xopt1) = 14
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Design Problem

Example from Yang et al. [20] was for FWL H2 control under
plant parameter uncertainty

Noting ‖Φ̂wz‖∞ ≥ ‖Φ̂wz‖2 and structured uncertainty includes
parameter uncertainty, we substituted ‖Φ̂wz‖∞ for ‖Φ̂wz‖2 and
plant structured uncertainty for plant parameter uncertainty

Nominal plant model P̂g(w) is defined by

AP =

»
0.5 0.1
0.2 0

–
, Bv =

»
1 0
0 1

–
, Bw =

»
1 0
1 0

–
, BP =

»
1
0

–
,

Ch =

»
1 0
1 1

–
, Cz =

»
1 1
0 1

–
, D2,2 =

»
1 0
0 1

–
, D2,3 =

»
1
1

–
,

CP =
ˆ

0 −1
˜
, D3,2 =

ˆ
1 1

˜
, D1,1 = D1,2 = D2,1 =

»
0 0
0 0

–
Plant structure uncertainty is defined by

Û(w) = ϕ(w)

»
1 0
0 1

–
∈ Hτ with ϕ(w) ∈ C and τ = 0.13
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Design Solution

Set constant ξ = 4.9676. We designed 1st-order controller by
solving the FWL robust design problem, leading to

Xopt2 =

[
1.0853 −0.36600
1.1031 −0.34734

]
with υ̃(Xopt2) = 0.0275, which can be implemented with a fixed
point processor of c̃(Xopt2) = 7 bits

As ‖Φ̂wz‖∞ ≥ ‖Φ̂wz‖2, system was guaranteed to be closed-loop
stable and ‖Φ̂wz‖2 < 4.9676 when τ = 0.13 and the FWL bound
was 0.0275

Yang et al. [20] obtained a controller achieving ‖Φ̂wz‖2 < 3.0822
when τ = 0.13 and the FWL bound 0.0275

Our method required to solve one BMI of size 22, while Yang et
al. [20] required to solve 32 BMIs of size 8
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Conclusions

We have used mixed µ theory to directly design optimal robust
FWL controllers, and our novel contributions include:

A robust FWL control performance measure taking into
account both robust control requirements and FWL
implementation considerations

This robust FWL control performance measure can be
computed conveniently using LMI

Optimal robust FWL controller design is formulated as a
mixed µ problem, which can be solved by means of BMI
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