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Abstract— A novel finite word length (FWL) controller
design is developed in the framework of mixedµ theory. A
robust FWL controller performance measure is proposed which
takes into account the standard robust control requirements
as well as the FWL implementation considerations, and the
corresponding FWL robust controller design problem is natu-
rally reformulated as a mixed µ problem which can be treated
effectively with the results of mixedµ theory.

I. I NTRODUCTION

It is well-known that the detrimental finite word length
(FWL) effects cannot be ignored in digital control system
designs [1]– [3]. Keel and Bhattacharyya [4] for example
showed that digital controllers designed by standard robust
control methods may exhibit poor stability margin with
respect to the controller coefficient perturbation, if the design
does not take into account properly the FWL implementation
related uncertainty. There exist mainly two types of FWL
errors in digital controller implementation. The first one is
the rounding errors that occur in arithmetic operations [5],
[6] and the second one is the parameter representation errors
[7]– [21], both due to finite precision. Typically, these two
types of errors are investigated separately for the reason
of mathematical tractability. In this paper we deal with
the second type of FWL errors, namely, FWL parameter
representation errors.

Two alternative strategies which we refer to as the indirect
and direct approaches, respectively, can be used to design
digital controllers that take into account FWL parameter
representation errors. In the indirect strategy [7]– [13],a
control law is firstly constructed by an existing controller
synthesis method which may or may not take into account
FWL effects. Optimal controller realizations are then selected
that are most robust to FWL errors from all the realizations
of the given control law. In the direct strategy [14]– [21],
the controller realization, which achieves good robust control
performance as well as is robust to FWL parameter repre-
sentation errors, is directly determined in controller synthesis

J. Wu and J. Chu are with State Key Laboratory of Industrial Control
Technology, Institute of Cyber-Systems and Control, Zhejiang University,
Hangzhou 310027, P. R. China

G. Li is with the College of Information Engineering, Zhejiang University
of Technology, Zhejiang 310014, P. R. China

S. Chen (contact author) is with School of Electronics and Computer
Science, University of Southampton, Southampton SO17 1BJ, UK, E-mail:
sqc@ecs.soton.ac.uk

This work was supported by a Tan Chin Tuan exchange fellow-
ship of Nanyang Technological University, Singapore; National Natural
Science Foundation of China (Grants No.60774001, No.60736021 and
No.60721062), 973 Program of China (Grant No.2009CB320603), 863
Program of China (Grant No.2008AA042602), 111 Project of China (Grant
No.B07031); United Kingdom Royal Society and Royal Academy of
Engineering.

stage by solving the design problem that properly considers
FWL effects as well as standard robust control design factors,
such as plant uncertainties and disturbances.

This paper adopts the direct approach to consider the
robust FWL output feedback controller design. A robust
FWL control performance measure is proposed which takes
into account the robust control requirements, such as plant
uncertainties and input-output characteristics, as well as the
FWL effects on controller implementation. We show that the
related robust FWL controller design problem can naturally
be formulated as a mixedµ problem and thus it can be solved
effectively with the aid of the mixedµ theory [22], [23].

II. N OTATIONS AND PRELIMINARIES

Let R be the field of real numbers,C the field of complex
numbers, andU the closed unit disk inC. AT denotes the
transpose of matrixA, A∗ the complex conjugate transpose
of A, andσ(A) the largest singular value ofA. Let ρ(A)
anddetA represent the spectral radius and the determinant
of square matrixA, respectively.In denotes then × n

identity matrix, while I and 0 represent the identity and
zero matrices of appropriate dimensions, respectively. Let
dn = [1 1 · · · 1] ∈ R1×n whose elements are all equal to 1.
A

⊗
B is the Kronecker product of matricesA andB.

DenoteF the set of all the causal finite-dimensional linear
time-invariant discrete-time systems. Any system inF can
be described as

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(1)

wherex(k) ∈ Rnx , u(k) ∈ Rnu andy(k) ∈ Rny are state,
input and output, respectively, and the real constant matrices
A, B, C andD have appropriate dimensions. The transfer
function matrix of the above system is1

Ĝ(λ)
△
= λC(I − λA)−1B + D . (2)

Ĝ(λ) is stable (A is stable) if and only ifρ(A) < 1 or
equivalently∀λ ∈ U , det(I − λA) 6= 0. If Ĝ(λ) is stable,
then

‖Ĝ(λ)‖∞
△
= sup
λ∈U

σ(Ĝ(λ)) < ∞ .

The following results of the mixedµ theory are from [23].
We have a matrixM ∈ Cna×na and three non-negative
integersp, q and r with p + q + r ≤ na, which specify
the numbers of uncertainty blocks of three types: repeated

1The transfer function matrix is defined asC(zI − A)−1B + D with
the forward shift operatorz in most literatures. The backward shift operator
λ = z−1 is adopted in this paper.



complex scalars, repeated real scalars and full complex
blocks. A (p + q + r)-tuple of positive integers

k(p, q, r) = [k1 · · · kp kp+1 · · · kp+q m1 · · · mr]
T (3)

specifies the dimensions of the perturbation blocks, and we
require

p+q∑

i=1

ki +

r∑

j=1

mj = na, (4)

in order that these dimensions are compatible withM. The
block structurek(p, q, r) determines the set of allowable
perturbations, namely

K △
=





Υ

∣∣∣∣∣∣∣∣∣∣∣∣

Υ = diag
(
ζ1Ik1 , · · · , ζpIkp ,

ζp+1Ikp+1
, · · · , ζp+qIkp+q ,

Γ1, · · · ,Γr) ∈ Cna×na :
∀i ∈ {1, · · · , p}, ζi ∈ C;
∀i ∈ {p + 1, · · · , p + q}, ζi ∈ R;
∀j ∈ {1, · · · , r},Γj ∈ Cmj×mj





. (5)

The mixedµ of a matrix M ∈ Cna×na with respect to a
perturbation setK is defined as

µK(M)
△
=

(
inf

Υ∈K
{σ(Υ)|det(I − ΥM) = 0}

)−1

. (6)

with µK(M) = 0 if no Υ ∈ K solvesdet(I − ΥM) = 0.
Presently, except for a few special cases, how to compute

µK(M) is unknown. However, an upper bound ofµK(M)
provided in the following is easy to compute and is often
used to replaceµK(M) in practice. Define

EK
△
=





E

∣∣∣∣∣∣∣∣∣∣∣∣

E = diag (E1, · · · ,Ep,
Ep+1, · · · ,Ep+q,
η1Im1

, · · · , ηrImr ) ∈ Cna×na :
∀i ∈ {1, · · · , p + q},

0 < Ei ∈ Cki×ki ;
∀j ∈ {1, · · · , r}, 0 < ηj ∈ R





, (7)

GK
△
=





G

∣∣∣∣∣∣∣∣∣∣

G = diag
(
0Ik1 , · · · , 0Ikp ,

Gp+1, · · · ,Gp+q,

0Im1
, · · · , 0Imr ) ∈ Cna×na :

∀i ∈ {p + 1, · · · , p + q},
Gi = G∗

i ∈ Cki×ki





. (8)

Then

αK(M)
△
= inf

E∈EK
G∈GK
0<α∈R

{
α

∣∣∣∣
α2E − M∗EM

−
√
−1(GM − M∗G) > 0

}
(9)

is an upper bound ofµK(M), i.e. µK(M) ≤ αK(M). When
the real scalars ofΥ ∈ K are not repeated andM is a
real matrix,αK(M) can be expressed in a simpler form and
computed more easily. Define

ERK
△
=

{
E ∈ EK

∣∣E ∈ Rna×na
}

. (10)

The following lemma is Theorem 5.12 in [23].

Lemma 1: Let a real matrixM ∈ Rna×na and a pertur-
bation setK with ki = 1 for i ∈ {p + 1, · · · , p + q} (i.e.
none of the real scalars are repeated). Then

αK(M) = inf
E∈ERK
0<α∈R

{α | α2E − MTEM > 0}. (11)

Corollary 1: ForM andK as inLemma 1, αK(M) < 1 if
and only if there existsE ∈ ERK such thatE−MTEM > 0.

III. ROBUST FWL PERFORMANCEMEASURE

The plant is described by a known nominal modelP̂g(λ)
and an uncertaintŷH(λ) which is unknown but bounded.
P̂g(λ) is given as





xP (k + 1) = APxP (k) + Bvv(k)+
Bww(k) + BPuP (k),

h(k) = ChxP (k)+
D1,1v(k) + D1,2w(k),

z(k) = CzxP (k)+
D2,1v(k) + D2,2w(k),

yP (k) = CPxP (k),

(12)

wherexP (k) ∈ Rn, v(k) ∈ Rn1 , w(k) ∈ Rn2 , uP (k) ∈
Rs, h(k) ∈ Rn1 , z(k) ∈ Rn2 , yP (k) ∈ Rt, w(k) is the
external disturbance input, andz(k) is the controlled output.
We have assumed without loss of generality thatv(k) and
h(k) have the same dimension whilew(k) and z(k) have
the same dimension. If the paired variables have different
dimensions, they can be made equal by adding an appropriate
number of zero rows/columns to the corresponding plant
matrices. In addition, it is assumed thatBT

PBP > 0 and
CPCT

P > 0. This assumption reflects a reasonable practical
situation of no redundant actuator or sensor. Throughh(k)
andv(k), P̂g(λ) connects withĤ(λ), i.e.

v = Ĥ(λ)h. (13)

Ĥ(λ) is included in the set

Hτ
△
=

{
Ĥ(λ)

∣∣∣∣
Ĥ(λ) ∈ F , Ĥ(λ) is stable,
‖Ĥ(λ)‖∞ < τ

}
(14)

with a given constantτ > 0. The digital controllerĈ(λ) of
mth-order is described by

{
xC(k + 1) = ACxC(k) + BCyP (k)

uP (k) = CCxC(k) + DCyP (k)
(15)

with AC ∈ Rm×m, BC ∈ Rm×t, CC ∈ Rs×m andDC ∈
Rs×t. Let us denote

X
△
=

[
DC CC

BC AC

]
∈ R(s+m)×(t+m). (16)

Denote furthermore

N
△
= (s + m)(t + m), (17)

O △
= {Λ | Λ ∈ RN×N ,Λ is diagonal}, (18)

Oβ
△
= {Λ | Λ ∈ O, σ(Λ) ≤ β}. (19)

When X is implemented in fixed-point format of FWL, it
is perturbed intoX + (dt+m

⊗
Is+m)Λ(It+m

⊗
dT
s+m),



where Λ ∈ Oβ and 0 ≤ β ∈ R is the maximum
representation error of the fixed-point digital processor.

The above description represents a closed-loop system
consisting of P̂g(λ) and Ĥ(λ) as well as X and Λ.
Denote this closed-loop system aŝΦ(λ, Ĥ(λ),X,Λ) and
the closed-loop transfer function fromw(k) to z(k) as
Φ̂wz(λ, Ĥ(λ),X,Λ). For 0 < ξ ∈ R, a set is defined which
consists of all themth-order robust controllers without FWL
consideration, that is,

Xm
△
=



X

∣∣∣∣∣∣

X ∈ R(s+m)×(t+m),∀Ĥ(λ) ∈ Hτ ,

Φ̂(λ, Ĥ(λ),X,0) is stable,
‖Φ̂wz(λ, Ĥ(λ),X,0)‖∞ ≤ ξ



 . (20)

To take into account the FWL errorΛ, we propose the
following FWL performance measure forX ∈ Xm

υd(X)
△
= sup

0≤β∈R



β

∣∣∣∣∣∣

∀Ĥ(λ) ∈ Hτ ,∀Λ ∈ Oβ ,

Φ̂(λ, Ĥ(λ),X,Λ) is stable,
‖Φ̂wz(λ, Ĥ(λ),X,Λ)‖∞ ≤ ξ



 .

(21)
For a givenX ∈ Xm, how to compute the value ofυd(X)
is unknown. Therefore, a tractable lower bound ofυd(X) is
derived with the aid of mixedµ. By “pulling out” Ĥ(λ) and
considering the composite system ofP̂g(λ), X and Λ, the
description of this composite system can be obtained as




xPC(k + 1) =
(
A(X) + BuΛCu

)
xPC(k)

+Bvv(k) + Bww(k),

h(k) = Ch xPC(k) + D1,1v(k)

+D1,2w(k),

z(k) = CzxPC(k) + D2,1v(k)

+D2,2w(k),

(22)

where

A(X) =

[
AP + BPDCCP BPCC

BCCP AC

]

=

[
AP 0

0 0

]
+

[
BP 0

0 Im

]
X

[
CP 0

0 Im

]

△
= M0 + M1XM2 ∈ R(n+m)×(n+m). (23)

Bu
△
= dt+m

⊗
M1 ∈ R(n+m)×N , (24)

Cu
△
= M2

⊗
dT
s+m ∈ RN×(n+m), (25)

Bv =

[
Bv

0

]
∈ R(n+m)×n1 , (26)

Bw =

[
Bw

0

]
∈ R(n+m)×n2 , (27)

Ch =
[

Ch 0
]
∈ Rn1×(n+m), (28)

Cz =
[

Cz 0
]
∈ Rn2×(n+m), (29)

and

xPC(k) =

[
xP (k)
xC(k)

]
.

When the system (22) is stable, its transfer function matrix
is defined by

Ψ̂(λ,X,Λ)
△
= λ

[
Ch
Cz

]
(I − λ(A(X) + BuΛCu))

−1

×
[

Bv Bw

]
+

[
D1,1 D1,2

D2,1 D2,2

]
(30)

whereΨ̂(λ,X,Λ) ∈ C(n1+n2)×(n1+n2). For all λ ∈ U , let

Kψ
△
=

{[
Υψ1 0

0 Υψ2

] ∣∣∣∣
Υψ1 ∈ Cn1×n1 ,

Υψ2 ∈ Cn2×n2

}
. (31)

Accordingly, we can obtainµKψ (Ψ̂(λ,X,Λ)) for all λ ∈ U .
The following result on robust performance [24] linksυd(X)
to mixedµ.

Lemma 2: For X ∈ R(s+m)×(t+m), if and only if there
exists0 ≤ β ∈ R such that

Ψ̂(λ,X,Λ) is stable, ∀Λ ∈ Oβ , (32)




µKψ

([
τIn1

1
ξ In2

]
Ψ̂(λ,X,Λ)

)
≤ 1,

∀λ ∈ U , ∀Λ ∈ Oβ ,

(33)

then X ∈ Xm and ∀Ĥ(λ) ∈ Hτ , ∀Λ ∈ Oβ ,
Φ̂(λ, Ĥ(λ),X,Λ) is stable,‖Φ̂wz(λ, Ĥ(λ),X,Λ)‖∞ ≤ ξ.

Clearly, by replacing (33) with




µKψ

([
τIn1

1
ξ In2

]
Ψ̂(λ,X,Λ)

)
< 1,

∀λ ∈ U , ∀Λ ∈ Oβ ,

(34)

we have a sufficient and “almost necessary” condition. The
problem in dealing with (32) and (34) is that̂Ψ(λ,X,Λ)
contains indeterminateλ and Λ. For this reason, we first
transform (32) and (34).

Theorem 1: For X ∈ R(s+m)×(t+m), if and only if there
exists0 ≤ β ∈ R such that

µKθ (Θ(X, β)) < 1, (35)

then (32) and (34) hold. In (35),Θ(X, β) and its correspond-
ing perturbation setKθ are defined respectively as

Θ(X, β)
△
=




A(X) Bu Bv Bw

βCu 0 0 0

τCh 0 τD1,1 τD1,2
1
ξCz 0 1

ξD2,1
1
ξD2,2


 , (36)

whereΘ(X, β) ∈ R(n+m+N+n1+n2)×(n+m+N+n1+n2), and

Kθ
△
=

{[
Υh

Υψ

] ∣∣∣∣
Υh ∈ Kh,
Υψ ∈ Kψ

}
. (37)

Due to the well-known difficulty in computing the
value of µKθ (Θ(X, β)), we replaceµKθ (Θ(X, β)) with
αKθ (Θ(X, β)).

Corollary 2: For X ∈ R(s+m)×(t+m), if there exists0 ≤
β ∈ R such that

αKθ (Θ(X, β)) < 1, (38)



then X ∈ Xm and ∀Ĥ(λ) ∈ Hτ , ∀Λ ∈ Oβ ,
Φ̂(λ, Ĥ(λ),X,Λ) is stable,‖Φ̂wz(λ, Ĥ(λ),X,Λ)‖∞ ≤ ξ.

BecauseαKθ (Θ(X, β)) ≥ µKθ (Θ(X, β)), (38) is a suffi-
cient condition for (35) to hold. Based on Corollary 2, define

X̃m
△
= {X | X ∈ R(s+m)×(t+m), αKθ (Θ(X, 0)) < 1}, (39)

which obviously is a subset ofXm. For X ∈ X̃m, define

υ̃d(X)
△
= sup

0≤β∈R

{β | αKθ (Θ(X, β)) < 1}, (40)

which obviously is a lower bound ofυd(X) and is an FWL
performance measure. ForKθ given in (37), the related
positive definite matrix set

ERKθ

△
=





E

∣∣∣∣∣∣∣∣

E = diag (E1, e1, · · · , eN ,

η1In1
, η2In2

) ,

0 < E1 ∈ R(n+m)×(n+m),

0 < e1, · · · , eN , η1, η2 ∈ R





(41)

is defined. It is interesting to see thatΘ(X, β) andKθ satisfy
the condition of Corollary 1 and hencẽυd(X) is computable
by solving the following optimisation problem

υ̃d(X) = sup
0≤β∈R

β, (42)

s.t. E > ΘT(X, β)EΘ(X, β),

E ∈ ERKθ ,

based on the combined linear matrix inequality (LMI) tech-
nique [25] and bisection search [26].

IV. ROBUST FWL CONTROLLER DESIGN

With the tractable FWL performance measureυ̃d(X),
the proposed FWL controller design problem can now be
summarised. Given̂Pg(λ), τ , ξ, m and assuming a nonempty
X̃m, find a controller realizationX ∈ X̃m that achieves

γd = sup
X∈X̃m

υ̃d(X), (43)

or equivalently

γd = sup
0≤β∈R

β, (44)

s.t. E > ΘT(X, β)EΘ(X, β),

E ∈ ERKθ , X ∈ R(s+m)×(t+m).

Note that this optimisation problem contains a bilinear matrix
inequality (BMI) [27] of size2(n+m+N +n1 +n2). Since

Θ(X, β) = Yβ + Y1XY2 (45)

with

Yβ
△
=




M0 Bu Bv Bw

βCu 0 0 0

τCh 0 τD1,1 τD1,2
1
ξCz 0 1

ξD2,1
1
ξD2,2


 , (46)

whereYβ ∈ R(n+m+N+n1+n2)×(n+m+N+n1+n2), and

Y1
△
=

[
M1

0

]
∈ R(n+m+N+n1+n2)×(s+m), (47)

Y2
△
=

[
M2 0

]
∈ R(t+m)×(n+m+N+n1+n2), (48)

we can write the optimisation problem (44) as

γd = sup
0≤β∈R

β, (49)

s.t. E > (Yβ + Y1XY2)
TE(Yβ + Y1XY2),

E ∈ ERKθ , X ∈ R(s+m)×(t+m).

The following result [28], [29] is useful in solving the
optimisation problem (49).

Lemma 3: Suppose thatYT
1 Y1 > 0 and Y2Y

T
2 > 0.

Give a 0 < ω ∈ R and a0 ≤ β ∈ R. If and only if there
exist 0 < E ∈ ERKθ , J ∈ R(s+m)×(n+m+N+n1+n2) and
L ∈ R(n+m+N+n1+n2)×(t+m) such that

{
ωE > (Yβ + Y1J)TE(Yβ + Y1J),
ωE > (Yβ + LY2)

TE(Yβ + LY2),
(50)

then there existsX ∈ R(s+m)×(t+m) such that

ωE > (Yβ + Y1XY2)
TE(Yβ + Y1XY2). (51)

When (50) holds, all theX satisfying (51) can be expressed
as

X = −(YT
1 EY1)

−1YT
1 EYβΞ1Y

T
2 (Y2Ξ1Y

T
2 )−1

+Ξ
1/2
2 Ω(Y2Ξ1Y

T
2 )−1 (52)

where

Ξ1
△
= (ωE−YT

βEYβ +YT
βEY1(Y

T
1 EY1)

−1YT
1 EYβ)

−1,

(53)

Ξ2
△
= (YT

1 EY1)
−1 − (YT

1 EY1)
−1YT

1 EYβ

×(Ξ1 − Ξ1Y
T
2 (Y2Ξ1Y

T
2 )−1Y2Ξ1)

×YT
βEY1(Y

T
1 EY1)

−1, (54)

Ω ∈ R(s+m)×(t+m), σ(Ω) < 1. (55)
The above lemma shows that (51) can be transformed into

(50). It is easy to see that (50) actually is an LMI whenJ

is given. Moreover, (50) is equivalent to
{

ωE−1 > (Yβ + Y1J)E−1(Yβ + Y1J)T,

ωE−1 > (Yβ + LY2)E
−1(Yβ + LY2)

T.
(56)

The inequality (56) is also an LMI whenL is given. Based
on the equivalent relations among (50), (51) and (56), the
optimisation problem (49) is solved in this paper by an
algorithm similar to the dual iteration algorithm [29]. We
tackle the problem (49) in two stages. The first stage’s task is
to obtain anLin ∈ R(n+m+N+n1+n2)×(t+m) which satisfies

{
E−1 > (Y0 + Y1J)E−1(Y0 + Y1J)T,

E−1 > (Y0 + LinY2)E
−1(Y0 + LinY2)

T,
(57)

for some0 < E ∈ ERKθ andJ ∈ R(s+m)×(n+m+N+n1+n2),
whereY0 is the value ofYβ at β = 0. In the second stage,
the problem (49) is solved with the feasible starting point
Lin. The details are as follows.

Stage 1
Step 1) Set the iterative indexi = 0 and arbitrarily select

an L(i) ∈ R(n+m+N+n1+n2)×(t+m).



Step 2) Solve

inf
ω∈R

ω, (58)

s.t. ωE−1 > (Y0 + Y1J)E−1(Y0 + Y1J)T,

ωE−1 > (Y0 + L(i)Y2)E
−1(Y0 + L(i)Y2)

T,

0 < E ∈ ERKθ , J ∈ R(s+m)×(n+m+N+n1+n2),

by a combination of LMI technique and bisection
search. Let a minimiser beJ(i).

Step 3) Solve

ωi+1 = inf
ω∈R

ω, (59)

s.t.ωE > (Y0 + Y1J(i))
TE(Y0 + Y1J(i)),

ωE > (Y0 + LY2)
TE(Y0 + LY2),

0 < E ∈ ERKθ , L ∈ R(n+m+N+n1+n2)×(t+m),

by a combination of LMI technique and bisection
search. Let a minimiser beL(i+1).

Step 4) Set i = i + 1. If ωi > 1, go toStep 2); if ωi ≤ 1,
let Lin = L(i) and enterStage 2.

Stage 2
Step 5) Let the iterative index bei = 0 andL(i) = Lin,

and setNit to a sufficiently large integer.
Step 6) Solve

sup
0≤β∈R

β, (60)

s.t. E−1 > (Yβ + Y1J)E−1(Yβ + Y1J)T,

E−1 > (Yβ + L(i)Y2)E
−1(Yβ + L(i)Y2)

T,

0 < E ∈ ERKθ , J ∈ R(s+m)×(n+m+N+n1+n2),

by the combined LMI technique and bisection
search. Let a maximiser beJ(i).

Step 7) Solve

βi+1= sup
0≤β∈R

β, (61)

s.t.E > (Yβ + Y1J(i))
TE(Yβ + Y1J(i)),

E > (Yβ + LY2)
TE(Yβ + LY2),

0 < E ∈ ERKθ , L ∈ R(n+m+N+n1+n2)×(t+m),

by the combined LMI technique and bisection
search. Let a maximiser beL(i+1), and denote
E(i+1) the corresponding positive definite matrix.

Step 8) Seti = i+1. If i < Nit, go toStep 6); if i ≥ Nit,
go to Step 9).

Step 9) Set Ed = E(i), denoteYd the value ofYβ at
β = βi, and calculate the optimal controller

Xdopt = −(YT
1 EdY1)

−1YT
1 EdYdΞdY

T
2

×(Y2ΞdY
T
2 )−1 (62)

with

Ξd
△
=

(
Ed − YT

d EdYd + YT
d EdY1

×(YT
1 EdY1)

−1YT
1 EdYd

)−1
. (63)

Step 10) Computeυ̃d(Xdopt) by solving (42) and termi-
nate the routine.

P̂0(λ)

Ŵ1(λ)

Ĥ(λ)

Ŵ2(λ)

Ĉ(λ)

w(k)
v(k)h(k)

uP (k) yP (k)

z(k)
P̂g(λ)

+

+

+

+

Fig. 1. System configuration of the robust finite-word-length control system
design example.

V. A N UMERICAL DESIGN EXAMPLE

The system configuration for this robust FWL control
system design example is shown in Figure 1, where

P̂0(λ) =
P̂n0(λ)

P̂d0(λ)

with P̂n0(λ) = 3.3750 × 10−3λ + 1.3669 × 10−2λ2

+3.4605 × 10−3λ3 and P̂d0(λ) = 1 − 3.0488λ + 3.1001λ2

−1.0513λ3,

Ŵ1(λ) =
4.9875 × 10−3λ

1 − 9.9501 × 10−1λ
,

Ŵ2(λ) =
5.8512 × 10−1λ − 5.5933 × 10−1λ2

1 − 1.3390λ + 3.7908 × 10−1λ2
,

and the plant model uncertaintŷH(λ) ∈ Hτ with τ = 0.4.
From the givenP̂0(λ), Ŵ1(λ) andŴ2(λ), it was easy to
obtain the nominal plant model̂Pg(λ) described by

AP =




0 1 0 0
0 0 1 0

1.0513 −3.1001 3.0488 0
0 0 0 0.99501
0 0 0 0
0 0 0 0

0 0
0 0
0 0
0 0
0 1

−0.37908 1.3390




,

Bv =




3.3750 × 10−3

2.3959 × 10−2

6.6043 × 10−2

0
0
0




, Bw =




0
0
0

4.9875 × 10−3

0
0




,

BP =




3.3750 × 10−3

2.3959 × 10−2

6.6043 × 10−2

0
0.58512
0.22413




,

Ch =
[

0 0 0 0 1 0
]
,



Cz =
[

1 0 0 1 0 0
]
,

CP =
[

1 0 0 1 0 0
]
,

and

D1,1 = 0, D1,2 = 0, D2,1 = 0, D2,2 = 0.

For this example, the constantξ that bounds the closed-loop
gain fromw(k) to z(k) was set toξ = 0.3, and the controller
order was chosen to bem = 2. The task was thus to design a
2nd-order controller realization directly based on the robust
FWL performance measurẽυd.

For this design example, the optimisation problem (49)
was formulated and the algorithm described in Section IV
was used to find solutions of the optimal robust FWL design
problem (49) with an initial guess ofL(0) =

[
I3 0

]T ∈
R19×3 in Stage 1. The resulting controller realization was

Xdopt =




−1.0344 × 10+2 −15.600 −1.4984
−16.070 −1.4261 0.25055
−19.469 −3.0400 0.37517




which achieves a robust FWL performancẽυd(Xdopt) =
8.2842×10−3. This designed controller realization achieves
the required robust control performance as well as is robustto
FWL perturbation errors because, for any FWL perturbation
to Xdopt smaller than8.2842×10−3 and for anyĤ(λ) ∈ Hτ

with τ = 0.4, the closed-loop system maintains stability and
the closed-loop gain fromw(k) to z(k) is always less than
0.3.

VI. CONCLUSIONS

A direct FWL controller design approach has been pro-
posed based on the mixedµ theory, where the task is to
design directly an optimal robust FWL controller. A novel
robust FWL control performance measure has been proposed
which takes into account the standard robust control require-
ments as well as the FWL implementation considerations.
This robust FWL control performance measure can be com-
puted conveniently using an LMI method. The corresponding
optimal robust FWL controller design problem has been
formulated naturally as a mixedµ problem which can be
solved by means of BMI techniques.
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