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Abstract— A generalized kernel modeling approach is pro-
posed for identification of discrete-time nonlinear systems.
Each kernel regressor in the generalized kernel model has an
individually fitted diagonal covariance matrix which is deter-
mined by maximizing the correlation between the regressor
and training data. A state-of-the-art construction algorithm
based on orthogonal least squares regression with leave-one-
out test statistic and local regularization is applied to select a
parsimonious generalized kernel model from the full regression
matrix. The effectiveness of the proposed nonlinear modeling
approach is demonstrated by the experimental results involving
one simulated system and two real data sets.

I. INTRODUCTION

The class of the orthogonal least squares (OLS) algo-
rithms [1]–[6] provides an effective construction method that
is capable of producing parsimonious linear-in-the-weights
nonlinear models with excellent generalization performance.
Alternatively, the state-of-the-art sparse kernel modeling
techniques, such as the support vector machine and relevant
vector machine [7]–[12], have been gaining popularity in
data modeling applications. These existing sparse regression
modeling techniques typically employ a single common
kernel variance for all the regressors. The value of this
common kernel variance has a crucial influence on the
sparsity level and generalization capability of the resulting
model, and it has to be determined via cross validation. For
example, in [3] a genetic algorithm is applied to determine
the appropriate common kernel variance through optimizing
the model generalization performance.

We propose a generalized kernel model, in which each
kernel regressor has an individually tuned diagonal covari-
ance matrix. This generalized kernel model has the potential
of enhancing modeling capability and producing sparser
models. The difficult issue is how to determine these kernel
covariance matrices. Since the correlation between a kernel
regressor and the training data defines the “similarity” be-
tween the regressor and training data, we can “shape” the re-
gressor by adjusting the associated kernel covariance matrix
in order to maximize the absolute value of this correlation
function. We employ the repeated weighted boosting search
(RWBS) algorithm [13] to perform kernel covariance fitting.
This algorithm is a guided random search method having its
root from boosting optimization [14]-[17]. The determination
of kernel covariance matrices provides the pool of regressors,
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from which a sparse subset model can be selected using a
standard kernel model construction approach.

We adopt the OLS algorithm with the leave-one-out (LOO)
test score and local regularization [6], referred to as the
LROLS with LOO for short, to select a sparse generalized
kernel model. This construction algorithm selects significant
regressors by directly maximizing model generalization ca-
pability, without resorting to use a separate validation data
set. The algorithm is computationally efficient and can pro-
duce very parsimonious models due to local regularization
that enforces sparse solutions. Moreover, the model building
process is automatic without the need for the user to specify
some additional termination criterion. The effectiveness of
the propose generalized kernel modeling approach is illus-
trated by three nonlinear system identification examples.

II. GENERALIZED KERNEL MODELING

Consider a general discrete stochastic nonlinear system
represented by [18]:

yk = fs(yk−1, · · · , yk−ny
, uk−1, · · · , uk−nu

;θ) + ek

= fs(xk;θ) + ek (1)

where uk and yk are the system input and output vari-
ables, respectively, nu and ny are positive integers rep-
resenting the known lags in uk and yk, respectively, the
observation noise ek is uncorrelated with zero mean, xk =
[yk−1 · · · yk−ny

uk−1 · · ·uk−nu
]T denotes the system input

vector with a known dimension n = ny + nu, fs(•) is the
unknown system mapping, and θ is an unknown parameter
vector associated with an appropriate model structure. The
system model (1) is to be identified from an N -sample
system observational data set DN = {xk, yk}

N
k=1.

We will model the unknown dynamical process (1) by
using a generalized kernel regression model of the form:

yk = ŷk + εk =

N
∑

i=1

θigi(xk) + εk = gT (k)θ + εk (2)

where ŷk denotes the model output given the input xk, εk

is the modeling error, θ = [θ1 θ2 · · · θN ]T is the model
weight vector, and g(k) = [g1(xk) g2(xk) · · · gN (xk)]T

is the regressor vector at the point xk. The model kernel
regressors are given by

gi(x) = ϕ

(

√

(x − xi)T Σ−1
i (x − xi)

)

(3)

with ϕ(•) being a chosen kernel function. The kernel centers
are placed directly on the training inputs xi, but each kernel
regressor has a kernel covariance matrix taking the form of



Σi = diag{σ2
i,1, · · · , σ

2
i,n}. Over the training set DN , the

model (2) can be written in the matrix form as

y = Gθ + ε (4)

by defining y = [y1 y2 · · · yN ]T , ε = [ε1 ε2 · · · εN ]T and
G = [g1 g2 · · ·gN ] with gi = [gi(x1) gi(x2) · · · gi(xN )]T ,
1 ≤ i ≤ N . Note that gk is the kth column of the regression
matrix G, while g(k) is the kth row of G.

Let an orthogonal decomposition of G be G = ΦA,
where

A =













1 a1,2 · · · a1,N

0 1
. . .

...
...

. . .
. . . aN−1,N

0 · · · 0 1













(5)

and Φ = [φ1 φ2 · · ·φN ] satisfying φT
i φj = 0, if i 6= j. The

regression model (4) can alternatively be expressed as

y = Φw + ε (6)

where the weight vector w = [w1 w2 · · ·wN ]T , defined in
the new space Φ, satisfy the triangular system Aθ = w. The
space spanned by the original model bases gi, 1 ≤ i ≤ N ,
is identical to the space spanned by the orthogonal bases φi,
1 ≤ i ≤ N , and ŷk can equivalently be expressed by

ŷk = φT (k)w (7)

where φ(k) = [φk,1 φk,2 · · ·φk,N ]T is the kth row of Φ.

III. SPARSE MODEL CONSTRUCTION ALGORITHM

The objective of sparse modeling is to construct a subset
model consisting of Ns (� N) significant regressors from
the full model defined in (2), which can adequately model
the underlying system (1).

A. Determination of the full regression matrix

To specify the pool of regressors or the full regression
matrix G, we need to determine all the associated diagonal
covariance matrices Σi, 1 ≤ i ≤ N . The correlation between
a regressor gi and the training data, defined by

C(Σi) =
yT gi

√

yT y
√

gT
i gi

(8)

represents the “similarity” between gi and y. We should
choose Σi so that |C(Σi)| is maximized. It can easily be
shown that this is a good strategy to specify the pool of
regressors. Let us first define the least squares cost or mean
square error (MSE) associated with an m-term model as

Sm =
1

N

N
∑

k=1

(yk − ŷk)
2 (9)

Obviously S0 = yT y/N = ‖y‖2/N . Assuming that gi is
selected to form a one-term model, the associated reduction
in the MSE value can be shown to be ∆S = S0 − S1 =
(

yT gi

)2
/gT

i gi, which can be rewritten as

∆S =
(

yT y
)

(

yT gi

)2

(yT y)
(

gT
i gi

) = ‖y‖2 |C(Σi)|
2 (10)

Since ‖y‖2 is a constant, maximizing |C(Σi)| leads to a
maximum reduction in the MSE value.

We apply the RWBS algorithm [13] to perform the associ-
ated optimization tasks for fitting kernel covariance matrices.
The RWBS algorithm is a simple yet efficient global search
algorithm that adopts some ideas from boosting [14]-[17].
The RWBS optimizer is given in Appendix. Once the full
regression matrix G has been designed, the LROLS with
LOO [6] can be used to select a subset model.

B. Efficient subset model selection

The weight vector w is obtained as the regularized least
squares solution obtained by minimizing the cost

JR(w,λ) = εT ε +

N
∑

i=1

λiw
2
i (11)

where λ = [λ1 λ2 · · ·λN ]T is the regularization parameter
vector, which is optimized based on the evidence procedure
with the iterative updating formulas [5],[6]

λnew
i =

γold
i

N − γold

εT ε

w2
i

, 1 ≤ i ≤ N (12)

where

γi =
φT

i φi

λi + φT
i φi

and γ =

N
∑

i=1

γi (13)

Usually a few iterations (typically less than 10) are sufficient
to find a local optimal λ. The Bayesian interpretation of the
criterion JR(w,λ) together with the full derivation of the
updating formulas (12) and (13) can be found in [5].

A forward selection procedure is used to construct a sparse
model by incrementally minimizing the LOO test score.
Assume that an m-term model is selected from the full model
(6). The LOO test error [19]-[22], denoted as ε

(m,−k)
k , for

the selected m-term model can be shown to be [4],[6]

ε
(m,−k)
k = ε

(m)
k /η

(m)
k (14)

where ε
(m)
k is the m-term modeling error and η

(m)
k is the

associated LOO error weighting given by

η
(m)
k = 1 −

m
∑

i=1

φ2
k,i

φT
i φi + λi

(15)

The mean square LOO error for the model with a size m is
defined by

Jm = E

[

(

ε
(m,−k)
k

)2
]

=
1

N

N
∑

k=1

(

ε
(m)
k

)2

(

η
(m)
k

)2 (16)

This LOO statistic is a measure of the model generalization
performance and it can be computed efficiently because ε

(m)
k

and η
(m)
k can be calculated recursively according to

ε
(m)
k = yk −

m
∑

i=1

φk,iwi = ε
(m−1)
k − φk,mwm (17)
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Fig. 1. Performance of the 15-term generalized Gaussian kernel model for
the simulated system: (a) model prediction (dashed) superimposed on noisy
system output (solid), and (b) model prediction error.

η
(m)
k = η

(m−1)
k −

φ2
k,m

φT
mφm + λm

(18)

respectively. The idea of delete-one cross validation and the
associated LOO test error are explained in [4],[6].

The subset model selection procedure can be carried as
follows: at the mth stage of the selection procedure, a model
term is selected among the remaining m to N candidates
if the resulting m-term model produces the smallest LOO
test score Jm. It has been shown in [4] that the LOO
statistic Jm is convex with respect to the model size m.
That is, there exists an “optimal” model size Ns such that for
m ≤ Ns Jm decreases as m increases while for m ≥ Ns +1
Jm increases as m increases. Thus the selection procedure
is automatically terminated with an Ns-term model when
JNs+1 > JNs

, without the need for the user to specify a
separate termination criterion. The details of the iterative
procedure for constructing a sparse model based on the
LROLS with LOO can be found in [6].

IV. MODELING EXAMPLES

Three examples were used to demonstrate the effectiveness
of the proposed model construction algorithm.
Example 1. This was the system considered in [23]. The
underlying dynamic system was governed by

zk =
zk−1zk−2zk−3uk−2(zk−3 − 1) + uk−1

1 + z2
k−2 + z2

k−3

(19)
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Fig. 2. Performance of the 15-term generalized Gaussian kernel model for
the simulated system: (a) iterative model output (dashed) superimposed on
noise-free system output (solid), and (b) iterative model error.

where the system input uk was a random signal uniformly
distributed in the interval [−1, 1]. The noisy system output
was given by yk = zk +ek, where the noise ek was Gaussian
distributed with zero mean and standard deviation 0.05. Four
hundred noisy samples were generated. The first 200 data
points were used for training, and the other 200 samples
were used for model validation. The generalized Gaussian
kernel model with the input vector

xk = [yk−1 yk−2 yk−3 uk−1 uk−2]
T (20)

was used to construct a model from the noisy training set.
The N = 200 candidates’ kernel covariance matrices

were first determined by the RWBS algorithm, and the
LROLS with LOO then selected a 15-term generalized
Gaussian kernel model. The MSE values of this model over
the training and testing sets were 0.003244 and 0.005195,
respectively. The model prediction ŷk and prediction error
εk = yk − ŷk over the first 100 data points of the test
set are depicted in Fig. 1. The constructed 15-term model
was also used to iteratively generate the model output
according to ŷd,k = fm(x̂d,k) with the input x̂d,k =
[ŷd,k−1 ŷd,k−2 ŷd,k−3 uk−1 uk−2]

T , where fm(•) denotes
the model mapping. The iterative model output ŷd,k and
iterative error, defined by ε̂d,k = zk − ŷd,k, are shown in
Fig. 2 over the first 100 data points of the test set.

For this example, the previous experiments had found
out that it was difficult to select a sparse Gaussian kernel
regression model using a common kernel variance [6]. Var-
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Fig. 3. Performance of the 15-term generalized Gaussian kernel model for
the engine data set: (a) model prediction (dashed) superimposed on system
output (solid), and (b) model prediction error.

ious existing kernel regression techniques were used in [6]
to fit a thin-plate-spline regression model for this system,
and the best result obtained had a 31-term thin-plate-spline
regression model with the MSE values of 0.003192 and
0.005892 over the training and validation sets, respectively.
Example 2. This example constructed a model representing
the relationship between the fuel rack position (input uk)
and the engine speed (output yk) for a Leyland TL11
turbocharged, direct injection diesel engine operated at a low
engine speed. Detailed system description and experimental
setup can be found in [24]. The data set contained 410
samples. The first 210 data points were used in training
and the last 200 points in model validation. The previous
results [5],[6] had shown that when fitting a Gaussian kernel
model with a single common variance, σ2 = 1.69 was the
optimal value for this kernel variance, and the model input
was given by xk = [yk−1 uk−1 uk−2]

T . Various kernel
modeling techniques were employed in [6] to fit this data set,
and the best Gaussian kernel model constructed consisted of
22 terms. The MSE values of this model over the training and
validation sets were 0.000453 and 0.000490, respectively.

The proposed modeling approach was applied to construct
a generalized Gaussian kernel model, yielding a 15-term
subset model. The MSE values of this model were 0.000482
over the training set and 0.000496 over the validation set,
respectively. The model prediction ŷk and prediction error
εk = yk − ŷk generated by this model are illustrated in
Fig. 3. This obtained 15-term model was used to iteratively
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Fig. 4. Performance of the 15-term generalized Gaussian kernel model for
the engine data set: (a) iterative model output (dashed) superimposed on
system output (solid), and (b) iterative model error.

generate the model output ŷd,k = fm(x̂d,k) with the input
vector x̂d,k = [ŷd,k−1 uk−1 uk−2]

T . The iterative model
output ŷd,k and the iterative model error εd,k = yk − ŷd,k,
are depicted in Fig. 4.

Example 3. The gas furnace data set (Series J in [25])
contained 296 pairs of input-output points, where the input
uk was the coded input gas feed rate and the output yk

was the CO2 concentration. All the 296 data points were
used in training, with the model input vector defined by
xk = [yk−1 yk−2 yk−3 uk−1 uk−2 uk−3]

T . The previous
experiments had found out that the existing state-of-the-
art kernel regression techniques failed to fit a Gaussian
kernel regression model using a common kernel variance
[6]. Various existing kernel modeling methods were used in
[6] to fit a thin-plate-spline regression model, and the best
thin-plate-spline model obtained contained 28 terms with the
training MSE 0.053306.

By adopting the proposed generalized kernel model ap-
proach, a 21-term generalized Gaussian kernel model was
identified with the training MSE 0.053452. The model
prediction and prediction error generated by this 21-term
generalized Gaussian kernel model are shown in Fig. 5.
The obtained model was also used to iteratively produce
the model output ŷd,k = fm(x̂d,k) given the input x̂d,k =
[ŷd,k−1 ŷd,k−2 ŷd,k−3 uk−1 uk−2 uk−3]

T . The iterative
model output ŷd,k and the associated iterative modeling error
εd,k = yk − ŷd,k are illustrated in Fig. 6.
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Fig. 5. Performance of the 21-term generalized Gaussian kernel model
for the gas furnace data set: (a) model prediction (dashed) superimposed on
system output (solid), and (b) model prediction error.

V. CONCLUSIONS

Nonlinear system identification has been considered using
a generalized kernel model. Each regressor in the generalized
kernel model has an individually fitted diagonal covariance
matrix, which is determined by maximizing a correlation
criterion using a guided random search algorithm called the
RWBS. The OLS algorithm based on the leave-one-out test
statistic and local regularization then automatically selects a
sparse model from the resulting pool of candidate regressors.
The effectiveness of the proposed modeling approach has
been demonstrated by the experimental results involving one
simulated system and two real data sets.
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APPENDIX: FIT KERNEL COVARIANCE MATRICES

The RWBS algorithm for fitting the lth regressor’s
covariance matrix is summarized. Let c be the n-
dimensional vector containing the diagonal covariance
matrix Σl. Specify the RWBS algorithmic parameters: PS –
population size, NG – number of generations in the repeated
search, and ξB – accuracy for terminating the weighted
boosting search.

•• Outer loop: generations For n = 1 : NG

• Generation initialization: Initialize the population by
setting c

(n)
1 = c

(n−1)
best and randomly generating rest

of the population members c
(n)
i , 2 ≤ i ≤ PS , where

c
(n−1)
best denotes the solution found in the previous gen-

eration. If n = 1, c
(n)
1 is also randomly chosen

• Weighted boosting search initialization: Assign the ini-
tial distribution weightings δi(0) = 1

PS
, 1 ≤ i ≤ PS ,

for the population, and calculate the cost function value
of each point c

(n)
i

hi = 1 − |C(c
(n)
i )|, 1 ≤ i ≤ PS

?? Inner loop: weighted boosting search Set t = 0;
For t = t + 1

• Step 1: Boosting

1) Find
ibest = arg min

1≤i≤PS

hi

iworst = arg max
1≤i≤PS

hi

Denote c
(n)
best = c

(n)
ibest

and c
(n)
worst = c

(n)
iworst

2) Normalize the cost function values

h̄i =
hi

∑PS

m=1 hm

, 1 ≤ i ≤ PS

3) Compute a weighting factor βt according to

ηt =

PS
∑

i=1

δi(t − 1)h̄i, βt =
ηt

1 − ηt

4) Update the distribution weightings for 1 ≤ i ≤ PS

δi(t) =

{

δi(t − 1)βh̄i

t , for βt ≤ 1

δi(t − 1)β1−h̄i

t , for βt > 1

and normalize them

δi(t) =
δi(t)

∑PS

m=1 δm(t)
, 1 ≤ i ≤ PS

• Step 2: Parameter updating

1) Construct the (PS + 1)th point using the formula

cPS+1 =

PS
∑

i=1

δi(t)c
(n)
i

2) Construct the (PS + 2)th point using the formula

cPS+2 = c
(n)
best +

(

c
(n)
best − cPS+1

)

3) Compute the cost function values hi = 1−|C(ci)|,
i = PS + 1, PS + 2, for these two points and find

i∗ = arg min
i=PS+1,PS+2

hi

4) The pair (ci∗ , hi∗) then replaces (c
(n)
worst, hiworst

)
in the population

• If ‖cPS+1 − cPS+2‖ < ξB , exit inner loop

?? End of inner loop
The solution found in the nth generation is c

(n)
best

•• End of outer loop
This yields the solution Σl = c

(NG)
best , i.e. the diagonal

kernel covariance matrix of the lth regressor.


