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Abstract. The pole-sensitivity approach is a general method for analyzing the
stability of the discrete-time control system with a finite wordlength (FWL) imple-
mented digital controller. It leads to a non-smooth and non-convex optimization
framework, where an optimal controller realization can be designed by maximizing
some stability related measure. In this contribution, a new stability related measure
is derived, which is more accurate in estimating the closed-loop stability robustness
of an FWL implemented controller than the existing measures of pole-sensitivity
analysis. This improved stability related measure provides a better criterion to find
the optimal FWL realizations for a generic controller structure that includes output-
feedback and observer-based controllers. An efficient global optimization strategy
called the adaptive simulated annealing (ASA) is adopted to solve for the resulting
optimization problem. A numerical example is included to verify the theoretical
analysis and to illustrate the design procedure.

8.1 Introduction

The classical controller design methodology often assumes that the controller
is implemented exactly, even though in reality a control law can only be real-
ized in finite precision. The justification of this assumption is usually on the
grounds that the plant uncertainty is the most significant source of uncer-
tainty in the control system. However, researchers have realized that the con-
troller uncertainty caused by finite-precision implementation has significant
influence on the performance of the control system. A designed stable con-
trol system may achieve a lower than predicted performance or even become
unstable when the control law is implemented with a finite-precision device
due to the FWL effects. This is highlighted in the so-called fragility puzzles
[1]-]3]: certain high-performance robust optimal controllers are known to be
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fragile. Ironically, these controllers have been designed to tolerate uncertainty
in the plant, and yet small perturbations on the controller parameters may
cause the designed closed-loop system to go unstable.

The fragility issues are strongly related to and interconnected with the
FWL controller implementation issues. Although the number of controller
implementations using floating-point processors is increasing due to their re-
duced price, for reasons of cost, simplicity, speed, memory space and power
consumption, the use of fixed-point processors is more desired for many
industrial and consumer applications. Furthermore, due to their reliability
and well-understood properties, fixed-point processors predominate in safety-
critical systems. With a fixed-point processor, however, the detrimental FWL
effects are markedly increased due to a reduced precision. The problem can
become serious when a high sampling rate and a high-order controller are
used. It has been noted that a controller design can be implemented with
different realizations and that the FWL effect on the closed-loop stability
depends on the controller realization structure. This property can be utilized
to select controller realization in order to improve the robustness of closed-
loop stability under controller perturbations. Currently, two approaches exist
for determining the optimal controller realizations under different criteria,
namely pole-sensitivity measures [4]-[8] and complex stability radius mea-
sures [9],[10].

In the first approach, pole-sensitivity measures [5],[6] are used to quantify
the FWL effect, leading to a non-convex and non-smooth optimization prob-
lem in finding an optimal FWL controller realization. The need to solve for a
non-convex and non-smooth optimization problem had been seen as a disad-
vantage, as conventional optimization algorithms [11],[12], which are better
known to the control community, may not guarantee to find a true optimal
realization. However, the efficient global optimization techniques [13]-[18] to
tackle this kind of difficult optimization problems are now widely available.
Moreover, the pole-sensitivity approach is very general and can be applied
to output-feedback and observer-based controllers as well as the controllers
that are parameterized either by the usual shift operator or the delta opera-
tor [8], [19]-[21]. More recently, Fialho and Georgiou [10] used the complex
stability radius measure to formulate an optimal FWL controller realization
problem that can be represented as a special H,-norm minimization problem
and solved for with the method of linear matrix inequality. In this second ap-
proach, the FWL perturbations are assumed to be complex-valued. Although
this assumption is somewhat artificial and the approach can only be applied
to shift-operator based output-feedback controllers, the method does not re-
quire to solve for a nonlinear optimization problem and has certain attractive
features. For a detailed treatment of this approach, see Chapter .

This contribution focuses on the pole-sensitivity analysis method and em-
phasizes a unified approach for analyzing the sensitivity of closed-loop sta-
bility with respect to FWL effects. A generic digital controller structure is
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Fig. 8.1. Discrete-time closed-loop system with a generic digital controller.

considered that includes output-feedback and observer-based controllers, and
a new stability related measure is proposed for the unified controller struc-
ture. An efficient global optimization procedure based on the ASA algorithm
[16]-[18] is developed to find the optimal controller realization that maximizes
this new measure. Through theoretical analysis and numerical results, it is
shown that this improve measure is less conservative in estimating the FWL
closed-loop stability robustness of a controller realization than the existing
pole-sensitivity measures [5],[6].

8.2 Problem Formulation

Consider the discrete-time closed-loop control system shown in Fig. 8.1, where
the linear time-invariant plant P is described by

{ x(k + 1) = Ax(k) + Be(k)

y(k) = Cx(k) (8.1)

which is completely state controllable and observable with A € R*"*"™, B €
R P and C € R?*"; and the generic digital stabilizing controller C' is de-
scribed by

{ v(k+1) =Fv(k) + Gy(k) + He(k)

u(k) = Jv(k) + My(k) (8.2)

with F € R*™*™ G € R™*?, J € RP*™ M € RP¥? and H € R™*P,
The output-feedback and observer-based controllers can be unified in this
general structure: C is an output-feedback controller when H = 0; a full-
order observer-based controller when F = A — GC, M = 0 and H = B;
a reduced-order observer-based controller, otherwise [22],[23]. Notice that,
for notational simplicity, we have restricted to the controller structure with
the shift operator z parameterization. All the results, however, can readily be
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extended to the controller structure with the delta operator parameterization
[19]-[21].

Assume that a realization (Fo, Go,Jo, Mg, Hg) of C' has been designed.
It is well-known that the realizations of C' are not unique. All the realizations
of C form the set:

S={(F,G,JM,H):F=T 'F,T,G =T 'G(,J = J,T,
M = My, H = T 'Hg} (8.3)
where T € R™*™ is any real-valued non-singular matrix, called a similarity

transformation. Let wg = Vec(F), with Vec(:) defining the column stacking
operator. Denote

WF WF,
w1 wa wa,
A A
w = = |lwy |, wo= | wy, (8.4)
wWN WM WM,
WH WH,

where N = (m + p)(m + q) + mp. We also refer to w as a realization of C.
The stability of the closed-loop system in Fig. 8.1 depends on the eigenvalues
of the matrix

- _ | A+BMC BJ I I R I 0

AW) = | gc+EMC F+HJ} = {0 T‘l} Alwo) {0 T] (8:5)

All the different realizations w in S are completely equivalent and, in particu-
lar, achieve exactly the same set of closed-loop poles, if they are implemented
with infinite precision. Since the closed-loop system will have been designed
to be stable, the eigenvalues

IN(AW))| = Ni(A(wo))| < 1, Vie {1,...,m+n} (8.6)

When a w is implemented with a fixed-point processor, it is perturbed
into w + Aw due to the FWL effect. Each element of Aw is bounded by
+e/2,

AWl £ max |Aw;| < €/2 8.7

[Awllx & max || < e/ (5.7)
For a fixed point processor of Bj bits, let By = B; + By, where 25i is a
“normalization” factor to make the absolute value of each element of 2~ Fiw
no larger than 1. Thus, B; are bits required for the integer part of a number
and By are bits used to implement the fractional part of a number. It can
easily be seen that

e=2"Bs (8.8)

With the perturbation Aw, \;(A(w)) is moved to A;(A(w + Aw)). If an
eigenvalue of A(w + Aw) is outside the open unit disk, the closed-loop sys-
tem, designed to be stable, becomes unstable with Bj-bit implemented w.
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It is therefore critical to know when the FWL error will cause closed-loop
instability. This ultimately means that we would like to know the largest
open “sphere” in the controller perturbation space, within which closed-loop
remains stable. The size or radius of this “sphere” is defined by:

o (W) 2 inf{||Aw||» : A(W + Aw) is unstable} (8.9)

From the definition of jo(w), it is obvious that A(w + Aw) remains stable
for any Aw with [|Aw||eo < po(w). The larger po(w) is, the larger FWL
error the closed-loop stability can tolerate. Hence, uo(w) constitutes a FWL
stability measure.

Let B™® he the smallest wordlength, when used to implement w, can
guarantee the closed-loop stability. An estimate of B™" can be obtained as

B = B; + Int[— log, (10 (W))] — 1 (8.10)

where the integer Int[z] > z. It can easily be seen that the closed-loop system
remains stable if w is implemented with a fixed-point processor of at least
BA'??(")H. Moreover, ug(w) is a function of the controller realization w, we could
search for an optimal realization that maximizes uo(w). However, it is not
known yet how to compute the value of po(w) given a realization w. A
practical solution is to consider a lower bound of the stability measure po(w)
in some sense, which is computationally tractable. This in effect defines a
smaller but known stable “sphere” or region in the Aw space. Obviously, the
closer such a lower bound is to po(w), the better. Two existing pole-sensitivity
measures [5],[6] can both be regarded as such lower bounds and, hence, termed
stability related measures. It should be emphasized that the approach based
on the complex stability radius measure [10] is also “conservative” in that the
region defined by the complex stability radius measure is generally smaller
than that defined by po(w).

8.3 A New Pole-sensitivity Stability Related Measure

Roughly speaking, how easily the FWL error Aw can cause a stable control
system to become unstable is determined by how close |)\1(A(w))| are to
1 and how sensitive they are to the controller parameter perturbations. We
propose the following FWL stability related measure!

. 1—[Xi(A(w))]
. 1-M(Aw)] 8.11
par(w) i€{1,mtn} ai(w) | |
with
d (A
X=F,G,J,M,H !

! This measure, as shown later, is an improved version of the existing measure j;
given in [6] and hence is denoted with p17.
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where, for a matrix X € C** the 1-norm ||X]||; is defined as

DA (8.13)

i=1 j=1

It remains to be shown how p17(w) can be regarded as an FWL stability
related measure, under what conditions u;;(w) is a lower bound of puo(w),
and that pi7(w) is computationally tractable.

In practice, those controller perturbations Aw that will not cause closed-
loop instability are most important. These Aw lie in the bound region:

O(w) £ {Aw : | Awl|os < pio(w)} (8.14)

Define a perturbation subset to the controller realization w to be

P(w) £ {Aw : (AW + Aw))| = [N(AW))| < [[AW]|oo - as(w), Vi}
(8.15)

It is straightforward to prove the following proposition.

Proposition 8.1. A(w + Aw) is stable if Aw € P(w) and ||Aw||o <
prrr(w).

Thus, pir(w) is a stability measure for Aw € P(w). The requirement for
Aw € P(w) is not over restricted. Similar to the discussions in [19],[8], it can

be proved that P(w) exists and at least a large part of Q(w) is covered by
P(w). Defining

P(w)) 2 inf [|AwW]||s 8.16
p(P(w)) Awép(w)ll I (8.16)

we have the following corollary, the proof of which is also straightforward.
Corollary 8.1. p17(w) < po(w) if p(P(w)) > po(w).

It can be seen that pir(w) is a lower bound of ug(w), provided that po(w)
is small enough. The assumption of small ug(w) is generally valid, especially
for control systems with fast sampling. Given a controller realization w, the
value of u1 7 (w) can readily be calculated. This is summarized in the following
theorem, the proof of which is given in Appendix A.

Theorem 8.1. Let x;(A(w)) and y;(A(w)) be the right and reciprocal left
eigenvectors related to the \;(A(w)), respectively, and
_ Re [N (A(wW))y; (A(w))x] (A(w))]

Li(w) D (AW))]

(8.17)

where * denotes the conjugate operator, T the transpose operator, and Re[/]
the real part. Then,
8 | Xi(A(w))]

Sl = [0 T]Li(w) m (8.18)

I
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o N(Aw))| _

G =10 I]Li(w){ 0] (8.19)
a|m(§;(w))| _[BT HT]Liw) m (8.20)
a|>\i((9i/ﬁw))| _[BT H]Li(w) [%T] (8.21)
a|Ai(;(w)>|:[0 I]Li(w){cyw (8.22)

Similar to (8.10), an estimate of B™® can be provided with pu;;(w) by
3017 = By + Int[— logy (11 (w))] — 1 (8.23)

Provided that the conditions of Proposition 8.1 and Corollary 8.1 are met,
Bmin > pmin > pmin. Thag is, BMY is a conservative estimate of the min-
imum bit length, compared with é?&“ Unlike B;‘(i)“, however, E?f} can be
computed easily. We now show that p17(w) is a closer lower bound of po(w)
than the two existing pole-sensitivity measures [5],[6], denoted as p2(w) and
w1 (w), respectively. Since it has been demonstrated [6] that u (w) is a closer
lower bound of po(w) than us(w), we only need to compare pir(w) with
p1(w). The stability related measure p (w) is define as [6]:

A . 1— | Xi(A(w))]
= _ 8.24
) = ey T B (824
with
ORI E et (8.25)
X=F,G,J,M,H 1
An estimate of B™" is provided with p; (w) by
B™™ = B; + Int[— log, (11 (w))] — 1 (8.26)

The key difference between uy7(w) and pi(w) is that the former consid-
ers the sensitivity of |/\Z(A(w))| while the latter considers the sensitivity of
Ai(A(w)). It is well known that the stability of a linear discrete-time sys-
tem depends only on the moduli of its eigenvalues. As u;(w) includes the
unnecessary eigenvalue arguments in consideration, it is expected that pq(w)
is conservative in comparison with pir(w). This can strictly be verified with
the following. Noting

0 |Mi(A(w))|

Bwj

AN (A(w)

=Re |\ (A(wW)) 0, ) / |Ni(A(w))] (8.27)
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gives rise to

A;‘(A(W))%wf.w”‘ _ ‘axi(A(w))‘

(A W) (8.28)

Bwj 8wj

‘api(A(w))w -

which means that «;(w) < 3;(w). This leads to:

Theorem 8.2. pu;(w) < pir(w) and é?{“ > ﬁ?i’}

8.4 Optimization Procedure

When a controller is designed, it will have satisfied certain performance cri-
teria and, in particular, ensures closed-loop stability. The design, however,
is usually done under the infinite or at least high precision assumption. As
actual implementation can only be finite precision, the real controller perfor-
mance may be quite different from the designed one and, if the bit length
is too small, the closed-loop stability may even be lost. Given a designed
controller realization, denoted as wq, there are infinite many realizations w
related to wg by (8.3). All these realizations are completely equivalent under
infinite precision implementation, but they may perform differently under
FWL implementation. The problem naturally arisen is to find an “optimal”
realization, denoted as Wop, such that pir(w) is maximized. This is of prac-
tical importance, since the controller implemented with w,,¢ can tolerate a
maximum FWL error. This optimal realization problem is formally defined
as

Wopt = argmax pir(w) (8.29)

Given the design wg, Vi € {l,---,m + n}, partition x;(A(wo)) and

yi(A(wo)):

SCCRIR trv] (30
yi(A(wo)) = nggzm (831)

where x;1(A(Wo)),yi1(A(wg)) € C" and x;2(A(wWo)),yi2(A(wp)) € C™.
It is easily seen from (8.5) that

x(Aw) = | S8 ] (8.32)

i) = | JFaGL) | (5.33)
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From (8.18)—(8.22), we have

w — TTLZ'7272(W0)T_T (834)
dNi(A(w)]

78(} = TTLZ’,QJ(WU)CT (835)
w = (BTLZ'7172(W0) + Hg’Li7272(W0)) T_T (836)
6|/\i(A(w))| B

o = (B"Liti(wo) + HyLis1(wo)) C” (8.37)
0 i A W

w =T7 (Li2,1(wo)CT"M{ + Li22(wo)J3 ) (8.38)

where
Re [X; (A(wo))y? ; (A(wo))xT (A(wo))]

Liji(wo) = , J,1=1,2 (839)

|Xi (A(wo))|
Define the following cost function:

: 1 — [Xi(A(wo))l
T) £ min _— = w 8.40
F) 2 min SO = () (8.40)
The optimal realization problem (8.29) can then be posed as the following
optimization problem of finding an optimal similarity transformation matrix:

Top = arg _max f(T) (8.41)
det(T)#0

Although f(T) is non-smooth and non-convex, efficient global optimization
methods exist for solving for this kind of optimization problem. The ASA
[17],[18] is such an algorithm and is adopted to search for a true global opti-
mum Top of the problem (8.41). The detailed ASA algorithm is provided in
Appendix B. With T,p, the optimal controller realization wopt, can readily
be obtained using the relationship (8.3).

8.5 A Numerical Example

A numerical example was used to illustrate the FWL optimal design pro-
cedure based on the pole-sensitivity approach. The plant model used was



122 Sheng Chen and Jun Wu

a modification of the plant studied in [5], which was a single-input single-
output system. One more output, the first state in the original plant model,
was added. The state-space model of this modified plant was given by

[3.2439¢ — 1 —4.5451e + 0 —4.0535e + 0 —2.7003e —3 0
1.4518e —1 4.9477e —1 —4.6945e — 1 —3.1274e — 4
A= |16814e—2 1.6491le—1 9.6681e —1 —2.2114e -5
1.1889e —3 1.8209e —2 1.9829¢ —1 1.0000e + 0
| 6.1301e—5 1.2609¢ —3 1.9930e —2 2.0000e — 1

= o O O

[1.4518¢ — 1
1.6814e — 2
B=|1.188¢—3|,
6.1301e — 5
| 2.4979¢ — 6

c— [0 016188 +0—15750e — 1 —4.3943¢ + 1
“[to o0 0 0

The closed-loop poles as given in [5] were used in design, and the designed
reduced-order observer-based controller obtained using a standard design pro-
cedure [23] had the form:

Foo— 0 1
97 1-9.3303e—1 1.9319¢+0 |’

G, _ | 41814 —22.7132¢ + 2
0~ 13.9090e — 2 1.0167e + 3|’

Jo =[3.0000e —4 5.0000e — 4],

M, = [0 6.1250¢ — 1], H0={7'80476+1}

7.384% + 1

With this initial controller realization w( and the plant model, the opti-
mization problem (8.41) was formed and solved for, giving rise to the following
optimal similarity transformation matrix:

T _ [14Tl4e+1 3.2071e+1
°Pt 7 1 1.3588¢+ 1 3.0531le+ 1

From Tgps, the corresponding optimal controller realization wp, was deter-
mined:

p o _ [ 9-8677e—11.4943¢ — 2
oPt T | _92.9047e — 2 9.4511e— 1|’

G. . _ [1.7066e —3 —1.8080¢ + 3
oPt T 1 52084e —4  8.3794e + 2|’
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Jopt = [1.1208¢ — 2 2.4887¢ — 2],

1.0691e + 0
Mopt = [0 6.1250e — 1], Hyp, = [1_94302+ 0]

For the initial and optimal controller realizations, the true minimal bit lengths
B™in that can guarantee the closed-loop stability were also determined using
a computer simulation method. Table 8.1 compares the values of the two
stability related measures, corresponding estimated minimum bit lengths and
true minimum bit lengths for the initial and optimal controller realizations.

The results clearly show that the new measure pq5 is much less conservative
than the existing measure p in estimating the true minimum bit length.

Table 8.1. Comparison of the two stability related measures, corresponding es-
timated minimum bit lengths and true minimum bit lengths for the initial and
optimal controller realizations.

realization s ;“i‘} I B;‘,‘i“ Bmin
wo 2.556877e-6 28 4.050854e-7 31 22
Wopt 8.696940e-5 24 3.012354e-6 29 21

The unit impulse response of the closed-loop control system when the con-
trollers were the infinite-precision implemented wg and various FWL imple-
mented realizations were also computed. Notice that any realization w € S,
implemented in infinite precision, will achieve the exact performance of the
infinite-precision implemented wq, which is the designed controller perfor-
mance. For this reason, the infinite-precision implemented wy is referred to
as the ideal controller realization wigea1- Fig. 8.2 compares the unit impulse
response of the first plant output y; (k) for the ideal controller implemen-
tation Wigeas with those of 21-bit implemented realizations wy and Wop. It
can be seen that the closed-loop became unstable with a 21-bit implemented
controller realization wo. However, the closed-loop system remained stable
with the 21-bit implemented wpy.

8.6 Conclusions

The pole-sensitivity approach has been adopted to address the stability issue
of the closed-loop discrete-time control system where a digital controller is
implemented with a fixed-point processor. A new FWL closed-loop stability
related measure has been derived, which is a less conservative lower bound
of the computationally intractable true stability measure than other exist-
ing measures of the pole-sensitivity approach. As this new stability related
measure is a function of the controller realization, it can be used as a cost
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Fig. 8.2. Comparison of unit impulse response for the infinite-precision controller
implementation Wiqea1 with those for the 21-bit implemented controller realizations
wo and Wopt.-

function for obtaining an optimal controller realization that maximizes the
proposed measure. An efficient optimization strategy has been developed for
optimizing a unified controller structure which includes output-feedback and
observer-based controllers.

Acknowledgements

The authors wish to thank the support of the UK Royal Society under a KC
Wong fellowship (RL/ART/CN/XFI/KCW/11949).

References

1. L.H. Keel and S.P. Bhattacharryya, “Robust, fragile, or optimal?” IEEE Trans.
Automatic Control, Vol.42, No.8, pp.1098-1105, 1997.

2. P.M. Makild, “Comments on ‘Robust, fragile, or optimal?’)” IEEE Trans. Au-
tomatic Control, Vol.43, No.9, pp.1265-1267, 1998.

3. P.M. Makila, “Fragility and robustness puzzles,” in Proc. American Control
Conf. (San Diego, CA, USA), June 2-4, 1999, pp.2914-2919.

4. M. Gevers and G. Li, Parameterizations in Control, Estimation and Filtering
Problems: Accuracy Aspects. London: Springer Verlag, 1993.

5. G. Li, “On the structure of digital controllers with finite word length consider-
ation,” TEEE Trans. Automatic Control, Vol.43, pp.689-693, 1998.

6. R.H. Istepanian, G. Li, J. Wu and J. Chu, “Analysis of sensitivity measures of
finite-precision digital controller structures with closed-loop stability bounds,”
IEE Proc. Control Theory and Applications, Vol.145, No.5, pp.472-478, 1998.



7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22
23

8 Pole-sensitivity Approach 125

S. Chen, J. Wu, R.H. Istepanian and J. Chu, “Optimizing stability bounds
of finite-precision PID controller structures,” IEEE Trans. Automatic Control,
Vol.44, No.11, pp.2149-2153, 1999.

J. Wu, S. Chen, G. Li and J. Chu, “Optimal finite-precision state-estimate feed-
back controller realization of discrete-time systems,” IEEE Trans. Automatic
Control, Vol.45, No.7, July 2000.

I.J. Fialho and T.T. Georgiou, “On stability and performance of sampled data
systems subject to word length constraint,” IEEE Trans. Automatic Control,
Vol.39, No.12, pp.2476-2481, 1994.

I.J. Fialho and T.T. Georgiou, “Optimal finite worldlength digital controller
realization,” in Proc. American Control Conf. (San Diego, CA, USA), June 2-4,
1999, pp.4326-4327.

G.S.G. Beveridge and R.S. Schechter, Optimization: Theory and Practice.
McGraw-Hill, 1970.

L.C.W. Dixon, Nonlinear Optimisation. London: The English Universities Press
Ltd, 1972.

D.E. Goldberg, Genetic Algorithms in Search, Optimisation and Machine
Learning. Addison Wesley, 1989.

K.F. Man, K.S. Tang and S. Kwong, Genetic Algorithms: Concepts and Design.
London: Springer-Verlag, 1998.

C.M. Fonseca and P.J. Fleming, “Multiobjective optimization and multiple con-
straint handling with evolutionary algorithms — Part I: A unified formulation,”
IEEE Trans. Systems, Man, and Cybernetics Part A: Systems and Humans,
Vol.28, No.1, pp.26-37, 1998.

L. Ingber, “Simulated annealing: practice versus theory,” Mathematical and
Computer Modelling, Vol.18, No.11, pp.29-57, 1993.

L. Ingber, “Adaptive simulated annealing (ASA): lessons learned,” J. Control
and Cybernetics, Vol.25, No.1, pp.33-54, 1996.

S. Chen and B.L. Luk, “Adaptive simulated annealing for optimization in signal
processing applications,” Signal Processing, Vol.79, No.11, pp.117-128, 1999.

S. Chen, J. Wu, R.H. Istepanian, J. Chu and J.F. Whidborne, “Optimizing sta-
bility bounds of finite-precision controller structures for sampled-data systems
in the delta operator domain,” IEE Proc. Control Theory and Applications,
Vol.146, No.6, pp.517-526, 1999.

S. Chen, R.H. Istepanian, J. Wu and J. Chu, “Comparative study on optimizing
closed-loop stability bounds of finite-precision controller structures with shift
and delta operators,” Systems and Control Letters, Vol.40, No.3, pp.153-163,
2000.

J. Wu, S. Chen, G. Li, R.H. Istepanian and J. Chu, “Shift and delta operator
realizations for digital controllers with finite-word-length considerations,” IEE
Proc. Control Theory and Applications, to appear, 2001.

T. Kailath, Linear Systems. Prentice-Hall, 1980.
J. O'Reilly, Observers for Linear Systems. London: Academic Press, 1983.



126 Sheng Chen and Jun Wu
A Appendix - Theorem Proof

Proof. Let the real-valued square matrix A = V+V XV, be diagonalisable,
where all the matrices concerned are real-valued with proper dimensions, and
Vo, V1 and V3 are independent of X. From Lemma 1 in [5],

dXi(A)
0X

where \;(A) denotes the i-th eigenvalue of A, x;(A) and y;(A) the related
right and reciprocal left eigenvectors, respectively. Noting

=V]y;(A)x] (A)V] (8.42)

N(A)] = /A (AN(A) (8.43)
leads to

DB (2580, 5 24)

- g ((3§;>>*Ai<m Fxm )

_ mRe [/\;* (A) ag;A)]

= oy VT Re A (AT (R)] VT (8.44)

The closed-loop system matrix (8.5) has the following equivalent forms:

o [ ] 2o
A(w)::AEﬁ%C FE';{J]+{(I)}G[C 0] (8.46)
A(w) = :G‘%JFJFBHN;EC g}+“ﬂ.1[0 1] (8.47)
A(w)=:(§0 FELJ}+[E}M[C 0] (8.48)
A(w) = _AJ’GBCMC E;;]] {(I)]H[MC J] (8.49)

Using (8.44) in (8.45)—(8.49) leads to (8.18)—(8.22). O
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B Appendix - Adaptive Simulated Annealing

The ASA is a global optimization scheme for solving for the following general
optimization problem:

)r(réi/‘r\lg J(x) (8.50)

It evolves a single point x = [ ---2p]T in the parameter or state space X.

The seemingly random search is guided by certain underlying probability dis-
tributions. Specifically, the general algorithm is described by three functions.
1. Generating probability density function

Gz, 27 T;;1 < i < D) (8.51)

This determines how a new state x"¢V is created, and from what neighbour-

hood and probability distributions it is generated, given the current state
x°4, The generating “temperatures” T; describe the widths or scales of the
generating distribution along each dimension z; of the state space.

Often a cost function has different sensitivities along different dimensions
of the state space. Ideally, the generating distribution used to search a steeper
and more sensitive dimension should have a narrower width than that of the
distribution used in searching a dimension less sensitive to change. The ASA
adopts a so-called reannealing scheme to periodically re-scale T;, so that
they optimally adapt to the current status of the cost function. This is an
important mechanism, which not only speeds up the search process but also
makes the optimization process robust to different problems.

2. Acceptance function

Paceept (J(x°'1), J(x"%), T..) (8.52)

This gives the probability of x"*" being accepted. The acceptance tempera-
ture T, determines the frequency of accepting new states of poorer quality.
Probability of acceptance is very high at very high temperature 7., and
it becomes smaller as T, is reduced. At every acceptance temperature, there
is a finite probability of accepting the new state. This produces occasionally
uphill move, enables the algorithm to escape from local minima, and allows a
more effective search of the state space to find a global minimum. The ASA
also periodically adapts T, to best suit the status of the cost function. This
helps to improve convergence speed and robustness.
3. Reduce temperatures or annealing schedule

To(ke) — To(ke + 1) }

8.53
Ti(ki) — Ty(ki +1), 1<i < D (8.33)

where k. and k; are some annealing time indexes. The reduction of temper-
atures should be sufficiently gradual in order to ensure that the algorithm
finds a global minimum.
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Initialisation

generate anew X
accept or reject x

Inner loop

Outer loop

Temperature
annealing

>

Yes

End

Fig. 8.3. Flow chart of the adaptive simulated annealing.

This mechanism is based on the observations of the physical annealing
process. When the metal is cooled from a high temperature, if the cooling is
sufficiently slow, the atoms line themselves up and form a crystal, which is
the state of minimum energy in the system. The annealing process usually
must converge very slowly to ensure a global optimum. The ASA, however,
can employ a very fast annealing schedule, as it has self adaptation ability
to re-scale temperatures.

An implementation of the ASA algorithm, shown in Fig. 8.3, is detailed
as follows.

(i) Initialisation An initial x is randomly generated, the initial tempera-
ture of the acceptance probability function, T.(0), is set to the initial
value of the cost function J(x), and the initial temperatures of the pa-
rameter generating probability functions, T;(0), 1 <4 < D, are set to 1.0.
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A control parameter ¢ in annealing process is given, and the annealing
times, k; for 1 < i < D and k., are all set to 0.

(ii) Generating The algorithm generates a new point in the parameter
space with:

2 =22 4 g, (U; — V;) and
2"V ¢ [U;, Vi], 1 <i < D. (8.54)

Here U; and V; are the lower and upper bounds for x;, g; is calculated as

gi = sgn (w - %) Ty(k:) ((1 + ﬁ) e 1) , (8.55)

and u; a uniformly distributed random variable in [0, 1]. The value of the
cost function J(x™¢V) is then evaluated and the acceptance probability
function of x"*% is given by

1
1+ exp ((J(xmew) = J(x°1)) /Te(ke))

(8.56)

Paccept =

A uniform random variable Py is generated in [0, 1]. If Pupir < Paccept,

X"V is accepted; otherwise it is rejected.
(iii) Reannealing After every Naccept acceptance points, calculating the
sensitivities:
J Xbest + 1.8)=.J Xbest ]
S; = ( 16) ( ) s 1 S ) S D, (857)
where x"®t is the best point found so far, ¢ is a small step size, the D-

dimensional vector 1; has unit ith element and the rest of elements of 1;
are all zeros. Let smax = max{s;, 1 < i < D}. Each T; is scaled by a
factor smax/s; and the annealing time k; is reset:

Ti(k;) = S’Z:"Ti(k,»), ki = (—élog (%&’g;))lj. (8.58)

Similarly, T..(0) is reset to the value of the last accepted cost function,
T.(k.) is reset to J(xP*") and the annealing time k. is rescaled accord-

ingly:

1 To(k)\ )"
ke=|—-1 . 8.59
( c°g<TC(0)>> (8:59)
(iv) Annealing After every Ngenera generated points, annealing takes place

with

ki=Fk+1 .
T;(k;) = T3(0) exp (—ck?) 1<i<D (8.60)
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and

Sy

kc = kc +1
T.(k.) = T.(0) exp (_ck ) } : (8.61)

Otherwise, goto step (ii).

(v) Termination The algorithm is terminated if the parameters has re-
mained unchanged for a few successive reannealings or a preset maximum
number of cost function evaluations has been reached; Otherwise, goto
step (ii).
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