
List of ContributorsKoldo BasterretxeaDepartment of Eletronis andTeleommuniationsUniversity of the Basque CountryPlaza de la Casilla 348012 Bilbao, VizayaSpainShankar P. BhattaharyyaDepartment of Eletrial Engineer-ingTexas A&M UniversityCollege Station, TX 77843USASheng ChenDepartment of Eletronis andComputer SieneUniversity of SouthamptonHigh�eld, Southampton SO17 1BJUnited Kingdome-mail: sq�es.soton.a.ukJoseph R. CorradoRaytheon Systems Co.Tuson, AZ 85734-1337USAe-mail:jorrado�west.raytheon.omIn�es del CampoDepartment of Eletriity andEletronisUniversity Of The Basque Country48940 Leioa, VizayaSpainSt�ephane DussyEADS Launh Vehiles66, route de Verneuil78130 Les MureauxFrane

Ian J. FialhoDynas Engineering - Boeing ISS2100 Spae Park Drive, MS HS44Houston, TX 77058USATryphon T. GeorgiouDepartment of Eletrial Engineer-ingUniversity of MinnesotaMinneapolis, MN 55455USARyszard GessingInstitute of Automati ControlSilesian Tehnial UniversityUl. Akademika 16, 44-101 GliwiePolandWassim M. HaddadShool of Aerospae EngineeringGeorgia Institute of TehnologyAtlanta, GA 30332-0150USAe-mail:wm.haddad�aerospae.gateh.eduRobert H. IstepanianDepartment of Eletroni andComputer EngineeringBrunel UniversityUxbridge, Middlesex, UB8 3PHUnited Kingdome-mail:Robert.Istepanian�brunel.a.uk



x List of ContributorsLee H. KeelCentre of Exellene in InformationSystemsTennessee State UniversityNashville, TN 37203USAGang LiShool of Eletrial and EletroniEngineeringNanyang Tehnologial UniversityNanyang Avenue, Singapore 639798SingaporePertti M. M�akil�aAutomation and Control InstituteTampere University of TehnologyPO Box 692, FIN-33101 TampereFinlandJuha PaattilammiAutomation and Control InstituteTampere University of TehnologyPO Box 692, FIN-33101 TampereFinlandYeng Chai SohShool of Eletrial and EletroniEngineeringNanyang Tehnologial UniversityNanyang Avenue, Singapore 639798Singaporee-mail: eysoh�ntu.edu.sgJos�e M. TarelaDepartment of Eletriity andEletronisUniversity Of The Basque Country48940 Leioa, VizayaSpain

James F. WhidborneDepartment of Mehanial Engineer-ingKing's College LondonStrand, London WC2R 2LSUnited Kingdome-mail:james.whidborne�kl.a.ukDarrell WilliamsonFaulty of Engineering and Informa-tion TehnologyThe Australian National UniversityCanberra, ACT 0200Australiae-mail:Darrell.Williamson�anu.edu.auJian Liang WangShool of Eletrial and EletroniEngineeringNanyang Tehnologial UniversityNanyang Avenue, Singapore 639798Singaporee-mail: ejlwang�ntu.edu.sgJun WuNational Laboratory of IndustrialControl TehnologyInstitute of Advaned ProessControlZhejiang UniversityHangzhou, 310027, P. R. Chinae-mail: jwu�iip.zju.edu.nGuang-Hong YangShool of Eletrial and EletroniEngineeringNanyang Tehnologial UniversityNanyang Avenue, Singapore 639798Singaporee-mail: egyang�ntu.edu.sg



8 The Determination of Optimal FinitePreision Controller Realizations Using aGlobal Optimization Strategy: aPole-sensitivity Approah
Sheng Chen1 and Jun Wu21 Department of Eletronis and Computer Siene, University of Southampton,U.K.2 Institute of Advaned Proess Control, Zhejiang University, Hangzhou, P.R.ChinaAbstrat. The pole-sensitivity approah is a general method for analyzing thestability of the disrete-time ontrol system with a �nite wordlength (FWL) imple-mented digital ontroller. It leads to a non-smooth and non-onvex optimizationframework, where an optimal ontroller realization an be designed by maximizingsome stability related measure. In this ontribution, a new stability related measureis derived, whih is more aurate in estimating the losed-loop stability robustnessof an FWL implemented ontroller than the existing measures of pole-sensitivityanalysis. This improved stability related measure provides a better riterion to �ndthe optimal FWL realizations for a generi ontroller struture that inludes output-feedbak and observer-based ontrollers. An eÆient global optimization strategyalled the adaptive simulated annealing (ASA) is adopted to solve for the resultingoptimization problem. A numerial example is inluded to verify the theoretialanalysis and to illustrate the design proedure.8.1 IntrodutionThe lassial ontroller design methodology often assumes that the ontrolleris implemented exatly, even though in reality a ontrol law an only be real-ized in �nite preision. The justi�ation of this assumption is usually on thegrounds that the plant unertainty is the most signi�ant soure of uner-tainty in the ontrol system. However, researhers have realized that the on-troller unertainty aused by �nite-preision implementation has signi�antinuene on the performane of the ontrol system. A designed stable on-trol system may ahieve a lower than predited performane or even beomeunstable when the ontrol law is implemented with a �nite-preision deviedue to the FWL e�ets. This is highlighted in the so-alled fragility puzzles[1℄{[3℄: ertain high-performane robust optimal ontrollers are known to be



114 Sheng Chen and Jun Wufragile. Ironially, these ontrollers have been designed to tolerate unertaintyin the plant, and yet small perturbations on the ontroller parameters mayause the designed losed-loop system to go unstable.The fragility issues are strongly related to and interonneted with theFWL ontroller implementation issues. Although the number of ontrollerimplementations using oating-point proessors is inreasing due to their re-dued prie, for reasons of ost, simpliity, speed, memory spae and poweronsumption, the use of �xed-point proessors is more desired for manyindustrial and onsumer appliations. Furthermore, due to their reliabilityand well-understood properties, �xed-point proessors predominate in safety-ritial systems. With a �xed-point proessor, however, the detrimental FWLe�ets are markedly inreased due to a redued preision. The problem anbeome serious when a high sampling rate and a high-order ontroller areused. It has been noted that a ontroller design an be implemented withdi�erent realizations and that the FWL e�et on the losed-loop stabilitydepends on the ontroller realization struture. This property an be utilizedto selet ontroller realization in order to improve the robustness of losed-loop stability under ontroller perturbations. Currently, two approahes existfor determining the optimal ontroller realizations under di�erent riteria,namely pole-sensitivity measures [4℄-[8℄ and omplex stability radius mea-sures [9℄,[10℄.In the �rst approah, pole-sensitivity measures [5℄,[6℄ are used to quantifythe FWL e�et, leading to a non-onvex and non-smooth optimization prob-lem in �nding an optimal FWL ontroller realization. The need to solve for anon-onvex and non-smooth optimization problem had been seen as a disad-vantage, as onventional optimization algorithms [11℄,[12℄, whih are betterknown to the ontrol ommunity, may not guarantee to �nd a true optimalrealization. However, the eÆient global optimization tehniques [13℄-[18℄ totakle this kind of diÆult optimization problems are now widely available.Moreover, the pole-sensitivity approah is very general and an be appliedto output-feedbak and observer-based ontrollers as well as the ontrollersthat are parameterized either by the usual shift operator or the delta opera-tor [8℄, [19℄{[21℄. More reently, Fialho and Georgiou [10℄ used the omplexstability radius measure to formulate an optimal FWL ontroller realizationproblem that an be represented as a speial H1-norm minimization problemand solved for with the method of linear matrix inequality. In this seond ap-proah, the FWL perturbations are assumed to be omplex-valued. Althoughthis assumption is somewhat arti�ial and the approah an only be appliedto shift-operator based output-feedbak ontrollers, the method does not re-quire to solve for a nonlinear optimization problem and has ertain attrativefeatures. For a detailed treatment of this approah, see Chapter .This ontribution fouses on the pole-sensitivity analysis method and em-phasizes a uni�ed approah for analyzing the sensitivity of losed-loop sta-bility with respet to FWL e�ets. A generi digital ontroller struture is
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Fig. 8.1. Disrete-time losed-loop system with a generi digital ontroller.onsidered that inludes output-feedbak and observer-based ontrollers, anda new stability related measure is proposed for the uni�ed ontroller stru-ture. An eÆient global optimization proedure based on the ASA algorithm[16℄{[18℄ is developed to �nd the optimal ontroller realization that maximizesthis new measure. Through theoretial analysis and numerial results, it isshown that this improve measure is less onservative in estimating the FWLlosed-loop stability robustness of a ontroller realization than the existingpole-sensitivity measures [5℄,[6℄.8.2 Problem FormulationConsider the disrete-time losed-loop ontrol system shown in Fig. 8.1, wherethe linear time-invariant plant P is desribed by�x(k + 1) = Ax(k) +Be(k)y(k) = Cx(k) (8.1)whih is ompletely state ontrollable and observable with A 2 Rn�n , B 2Rn�p and C 2 Rq�n ; and the generi digital stabilizing ontroller C is de-sribed by�v(k + 1) = Fv(k) +Gy(k) +He(k)u(k) = Jv(k) +My(k) (8.2)with F 2 Rm�m , G 2 Rm�q , J 2 Rp�m , M 2 Rp�q and H 2 Rm�p .The output-feedbak and observer-based ontrollers an be uni�ed in thisgeneral struture: C is an output-feedbak ontroller when H = 0; a full-order observer-based ontroller when F = A � GC, M = 0 and H = B;a redued-order observer-based ontroller, otherwise [22℄,[23℄. Notie that,for notational simpliity, we have restrited to the ontroller struture withthe shift operator z parameterization. All the results, however, an readily be



116 Sheng Chen and Jun Wuextended to the ontroller struture with the delta operator parameterization[19℄{[21℄.Assume that a realization (F0;G0;J0;M0;H0) of C has been designed.It is well-known that the realizations of C are not unique. All the realizationsof C form the set:S = f(F;G;J;M;H) : F = T�1F0T;G = T�1G0;J = J0T;M =M0;H = T�1H0g (8.3)where T 2 Rm�m is any real-valued non-singular matrix, alled a similaritytransformation. Let wF = Ve(F), with Ve(�) de�ning the olumn stakingoperator. Denotew = 24 w1...wN 35 , 26664 wFwGwJwMwH 37775 ; w0 , 26664 wF0wG0wJ0wM0wH0 37775 (8.4)where N = (m + p)(m + q) +mp. We also refer to w as a realization of C.The stability of the losed-loop system in Fig. 8.1 depends on the eigenvaluesof the matrix�A(w) = � A+BMC BJGC+HMC F+HJ � = � I 00 T�1 � �A(w0) � I 00 T � (8.5)All the di�erent realizationsw in S are ompletely equivalent and, in partiu-lar, ahieve exatly the same set of losed-loop poles, if they are implementedwith in�nite preision. Sine the losed-loop system will have been designedto be stable, the eigenvaluesj�i( �A(w))j = j�i( �A(w0))j < 1; 8i 2 f1; : : : ;m+ ng (8.6)When a w is implemented with a �xed-point proessor, it is perturbedinto w + �w due to the FWL e�et. Eah element of �w is bounded by��=2,k�wk1 , maxi2f1;���;Ng j�wij � �=2 (8.7)For a �xed point proessor of Bs bits, let Bs = Bi + Bf , where 2Bi is a\normalization" fator to make the absolute value of eah element of 2�Biwno larger than 1. Thus, Bi are bits required for the integer part of a numberand Bf are bits used to implement the frational part of a number. It aneasily be seen that� = 2�Bf (8.8)With the perturbation �w, �i( �A(w)) is moved to �i( �A(w + �w)). If aneigenvalue of �A(w +�w) is outside the open unit disk, the losed-loop sys-tem, designed to be stable, beomes unstable with Bs-bit implemented w.



8 Pole-sensitivity Approah 117It is therefore ritial to know when the FWL error will ause losed-loopinstability. This ultimately means that we would like to know the largestopen \sphere" in the ontroller perturbation spae, within whih losed-loopremains stable. The size or radius of this \sphere" is de�ned by:�0(w) 4= inffk�wk1 : �A(w +�w) is unstableg (8.9)From the de�nition of �0(w), it is obvious that �A(w +�w) remains stablefor any �w with k�wk1 < �0(w). The larger �0(w) is, the larger FWLerror the losed-loop stability an tolerate. Hene, �0(w) onstitutes a FWLstability measure.Let Bmins be the smallest wordlength, when used to implement w, anguarantee the losed-loop stability. An estimate of Bmins an be obtained asB̂mins;0 = Bi + Int[� log2(�0(w))℄� 1 (8.10)where the integer Int[x℄ � x. It an easily be seen that the losed-loop systemremains stable if w is implemented with a �xed-point proessor of at leastB̂mins;0 . Moreover, �0(w) is a funtion of the ontroller realization w, we ouldsearh for an optimal realization that maximizes �0(w). However, it is notknown yet how to ompute the value of �0(w) given a realization w. Apratial solution is to onsider a lower bound of the stability measure �0(w)in some sense, whih is omputationally tratable. This in e�et de�nes asmaller but known stable \sphere" or region in the �w spae. Obviously, theloser suh a lower bound is to �0(w), the better. Two existing pole-sensitivitymeasures [5℄,[6℄ an both be regarded as suh lower bounds and, hene, termedstability related measures. It should be emphasized that the approah basedon the omplex stability radius measure [10℄ is also \onservative" in that theregion de�ned by the omplex stability radius measure is generally smallerthan that de�ned by �0(w).8.3 A New Pole-sensitivity Stability Related MeasureRoughly speaking, how easily the FWL error �w an ause a stable ontrolsystem to beome unstable is determined by how lose ���i( �A(w))�� are to1 and how sensitive they are to the ontroller parameter perturbations. Wepropose the following FWL stability related measure1�1I(w) , mini2f1;���;m+ng 1� ���i( �A(w))���i(w) (8.11)with�i(w) , XX=F;G;J;M;H� ���i( �A(w))���X 1 (8.12)1 This measure, as shown later, is an improved version of the existing measure �1given in [6℄ and hene is denoted with �1I .



118 Sheng Chen and Jun Wuwhere, for a matrix X 2 C s�v , the 1-norm kXk1 is de�ned askXk1 , sXi=1 vXj=1 jxij j (8.13)It remains to be shown how �1I(w) an be regarded as an FWL stabilityrelated measure, under what onditions �1I(w) is a lower bound of �0(w),and that �1I (w) is omputationally tratable.In pratie, those ontroller perturbations �w that will not ause losed-loop instability are most important. These �w lie in the bound region:Q(w) , f�w : k�wk1 < �0(w)g (8.14)De�ne a perturbation subset to the ontroller realization w to beP(w) 4= f�w : ���i( �A(w +�w))��� ���i( �A(w))�� � k�wk1 � �i(w);8ig(8.15)It is straightforward to prove the following proposition.Proposition 8.1. �A(w + �w) is stable if �w 2 P(w) and k�wk1 <�1I(w).Thus, �1I(w) is a stability measure for �w 2 P(w). The requirement for�w 2 P(w) is not over restrited. Similar to the disussions in [19℄,[8℄, it anbe proved that P(w) exists and at least a large part of Q(w) is overed byP(w). De�ning� (P(w)) , inf�w=2P(w) k�wk1 (8.16)we have the following orollary, the proof of whih is also straightforward.Corollary 8.1. �1I(w) � �0(w) if �(P(w)) > �0(w).It an be seen that �1I (w) is a lower bound of �0(w), provided that �0(w)is small enough. The assumption of small �0(w) is generally valid, espeiallyfor ontrol systems with fast sampling. Given a ontroller realization w, thevalue of �1I (w) an readily be alulated. This is summarized in the followingtheorem, the proof of whih is given in Appendix A.Theorem 8.1. Let xi( �A(w)) and yi( �A(w)) be the right and reiproal lefteigenvetors related to the �i( �A(w)), respetively, andLi(w) = Re ���i ( �A(w))y�i ( �A(w))xTi ( �A(w))����i( �A(w))�� (8.17)where � denotes the onjugate operator, T the transpose operator, and Re[�℄the real part. Then,� ���i( �A(w))���F = [0 I ℄Li(w) �0I � (8.18)



8 Pole-sensitivity Approah 119� ���i( �A(w))���G = [0 I ℄Li(w) �CT0 � (8.19)� ���i( �A(w))���J = [BT HT ℄Li(w) � 0I � (8.20)� ���i( �A(w))���M = [BT HT ℄Li(w) �CT0 � (8.21)� ���i( �A(w))���H = [0 I ℄Li(w) �CTMTJT � (8.22)Similar to (8.10), an estimate of Bmins an be provided with �1I (w) byB̂mins;1I = Bi + Int[� log2(�1I (w))℄� 1 (8.23)Provided that the onditions of Proposition 8.1 and Corollary 8.1 are met,B̂mins;1I � B̂mins;0 � Bmins . That is, B̂mins;1I is a onservative estimate of the min-imum bit length, ompared with B̂mins;0 . Unlike B̂mins;0 , however, B̂mins;1I an beomputed easily. We now show that �1I(w) is a loser lower bound of �0(w)than the two existing pole-sensitivity measures [5℄,[6℄, denoted as �2(w) and�1(w), respetively. Sine it has been demonstrated [6℄ that �1(w) is a loserlower bound of �0(w) than �2(w), we only need to ompare �1I(w) with�1(w). The stability related measure �1(w) is de�ne as [6℄:�1(w) 4= mini2f1;���;m+ng 1� ���i( �A(w))���i(w) (8.24)with�i(w) , XX=F;G;J;M;H��i( �A(w))�X 1 (8.25)An estimate of Bmins is provided with �1(w) byB̂mins;1 = Bi + Int[� log2(�1(w))℄� 1 (8.26)The key di�erene between �1I(w) and �1(w) is that the former onsid-ers the sensitivity of ���i( �A(w))�� while the latter onsiders the sensitivity of�i( �A(w)). It is well known that the stability of a linear disrete-time sys-tem depends only on the moduli of its eigenvalues. As �1(w) inludes theunneessary eigenvalue arguments in onsideration, it is expeted that �1(w)is onservative in omparison with �1I(w). This an stritly be veri�ed withthe following. Noting� ���i( �A(w))���wj = Re ���i ( �A(w))��i( �A(w))�wj � = ���i( �A(w))�� (8.27)



120 Sheng Chen and Jun Wugives rise to������ ���i( �A(w))���wj ����� � �����i ( �A(w))��i( �A(w))�wj ������i( �A(w))�� = ������i( �A(w))�wj ���� (8.28)whih means that �i(w) � �i(w). This leads to:Theorem 8.2. �1(w) � �1I (w) and B̂mins;1 � B̂mins;1I .8.4 Optimization ProedureWhen a ontroller is designed, it will have satis�ed ertain performane ri-teria and, in partiular, ensures losed-loop stability. The design, however,is usually done under the in�nite or at least high preision assumption. Asatual implementation an only be �nite preision, the real ontroller perfor-mane may be quite di�erent from the designed one and, if the bit lengthis too small, the losed-loop stability may even be lost. Given a designedontroller realization, denoted as w0, there are in�nite many realizations wrelated to w0 by (8.3). All these realizations are ompletely equivalent underin�nite preision implementation, but they may perform di�erently underFWL implementation. The problem naturally arisen is to �nd an \optimal"realization, denoted as wopt, suh that �1I(w) is maximized. This is of pra-tial importane, sine the ontroller implemented with wopt an tolerate amaximum FWL error. This optimal realization problem is formally de�nedas wopt = argmaxw2S �1I(w) (8.29)Given the design w0, 8i 2 f1; � � � ;m + ng, partition xi( �A(w0)) andyi( �A(w0)):xi( �A(w0)) = �xi;1( �A(w0))xi;2( �A(w0)) � (8.30)yi( �A(w0)) = �yi;1( �A(w0))yi;2( �A(w0)) � (8.31)where xi;1( �A(w0));yi;1( �A(w0)) 2 C n and xi;2( �A(w0));yi;2( �A(w0)) 2 Cm .It is easily seen from (8.5) thatxi( �A(w)) = � xi;1( �A(w0))T�1xi;2( �A(w0)) � (8.32)yi( �A(w)) = � yi;1( �A(w0))TTyi;2( �A(w0)) � (8.33)



8 Pole-sensitivity Approah 121From (8.18){(8.22), we have� ���i( �A(w))���F = TTLi;2;2(w0)T�T (8.34)� ���i( �A(w))���G = TTLi;2;1(w0)CT (8.35)� ���i( �A(w))���J = �BTLi;1;2(w0) +HT0 Li;2;2(w0)�T�T (8.36)� ���i( �A(w))���M = �BTLi;1;1(w0) +HT0 Li;2;1(w0)�CT (8.37)� ���i( �A(w))���H = TT �Li;2;1(w0)CTMT0 + Li;2;2(w0)JT0 � (8.38)whereLi;j;l(w0) = Re h��i ( �A(w0))y�i;j( �A(w0))xTi;l( �A(w0))i���i( �A(w0))�� ; j; l = 1; 2 (8.39)De�ne the following ost funtion:f(T) , mini2f1;���;m+ng 1� j�i( �A(w0))j�i(w) = �1I (w) (8.40)The optimal realization problem (8.29) an then be posed as the followingoptimization problem of �nding an optimal similarity transformation matrix:Topt = arg maxT2Rm�mdet(T)6=0 f(T) (8.41)Although f(T) is non-smooth and non-onvex, eÆient global optimizationmethods exist for solving for this kind of optimization problem. The ASA[17℄,[18℄ is suh an algorithm and is adopted to searh for a true global opti-mum Topt of the problem (8.41). The detailed ASA algorithm is provided inAppendix B. With Topt, the optimal ontroller realization wopt an readilybe obtained using the relationship (8.3).8.5 A Numerial ExampleA numerial example was used to illustrate the FWL optimal design pro-edure based on the pole-sensitivity approah. The plant model used was



122 Sheng Chen and Jun Wua modi�ation of the plant studied in [5℄, whih was a single-input single-output system. One more output, the �rst state in the original plant model,was added. The state-spae model of this modi�ed plant was given byA = 266664 3:2439e� 1 �4:5451e+ 0 �4:0535e+ 0 �2:7003e� 3 01:4518e� 1 4:9477e� 1 �4:6945e� 1 �3:1274e� 4 01:6814e� 2 1:6491e� 1 9:6681e� 1 �2:2114e� 5 01:1889e� 3 1:8209e� 2 1:9829e� 1 1:0000e+ 0 06:1301e� 5 1:2609e� 3 1:9930e� 2 2:0000e� 1 1377775 ;B = 266664 1:4518e� 11:6814e� 21:1889e� 36:1301e� 52:4979e� 6377775 ;C = �0 0 1:6188e+ 0 �1:5750e� 1 �4:3943e+ 11 0 0 0 0 �The losed-loop poles as given in [5℄ were used in design, and the designedredued-order observer-based ontroller obtained using a standard design pro-edure [23℄ had the form:F0 = � 0 1�9:3303e� 1 1:9319e+ 0 � ;G0 = �4:1814e� 2 2:7132e+ 23:9090e� 2 1:0167e+ 3� ;J0 = [ 3:0000e� 4 5:0000e� 4 ℄ ;M0 = [ 0 6:1250e� 1 ℄ ; H0 = � 7:8047e+ 17:3849e+ 1 �With this initial ontroller realization w0 and the plant model, the opti-mization problem (8.41) was formed and solved for, giving rise to the followingoptimal similarity transformation matrix:Topt = � 1:4714e+ 1 3:2071e+ 11:3588e+ 1 3:0531e+ 1�From Topt, the orresponding optimal ontroller realization wopt was deter-mined:Fopt = � 9:8677e� 1 1:4943e� 2�2:9047e� 2 9:4511e� 1� ;Gopt = �1:7066e� 3 �1:8080e+ 35:2084e� 4 8:3794e+ 2� ;



8 Pole-sensitivity Approah 123Jopt = [ 1:1208e� 2 2:4887e� 2 ℄ ;Mopt = [ 0 6:1250e� 1 ℄ ; Hopt = � 1:0691e+ 01:9430e+ 0�For the initial and optimal ontroller realizations, the true minimal bit lengthsBmins that an guarantee the losed-loop stability were also determined usinga omputer simulation method. Table 8.1 ompares the values of the twostability related measures, orresponding estimated minimum bit lengths andtrue minimum bit lengths for the initial and optimal ontroller realizations.The results learly show that the new measure �1I is muh less onservativethan the existing measure �1 in estimating the true minimum bit length.Table 8.1. Comparison of the two stability related measures, orresponding es-timated minimum bit lengths and true minimum bit lengths for the initial andoptimal ontroller realizations.realization �1I B̂mins;1I �1 B̂mins;1 Bminsw0 2.556877e-6 28 4.050854e-7 31 22wopt 8.696940e-5 24 3.012354e-6 29 21The unit impulse response of the losed-loop ontrol system when the on-trollers were the in�nite-preision implemented w0 and various FWL imple-mented realizations were also omputed. Notie that any realization w 2 S,implemented in in�nite preision, will ahieve the exat performane of thein�nite-preision implemented w0, whih is the designed ontroller perfor-mane. For this reason, the in�nite-preision implemented w0 is referred toas the ideal ontroller realization wideal. Fig. 8.2 ompares the unit impulseresponse of the �rst plant output y1(k) for the ideal ontroller implemen-tation wideal with those of 21-bit implemented realizations w0 and wopt. Itan be seen that the losed-loop beame unstable with a 21-bit implementedontroller realization w0. However, the losed-loop system remained stablewith the 21-bit implemented wopt.8.6 ConlusionsThe pole-sensitivity approah has been adopted to address the stability issueof the losed-loop disrete-time ontrol system where a digital ontroller isimplemented with a �xed-point proessor. A new FWL losed-loop stabilityrelated measure has been derived, whih is a less onservative lower boundof the omputationally intratable true stability measure than other exist-ing measures of the pole-sensitivity approah. As this new stability relatedmeasure is a funtion of the ontroller realization, it an be used as a ost
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126 Sheng Chen and Jun WuA Appendix - Theorem ProofProof. Let the real-valued square matrix �A = V0+V1XV2 be diagonalisable,where all the matries onerned are real-valued with proper dimensions, andV0, V1 and V2 are independent of X. From Lemma 1 in [5℄,��i( �A)�X = VT1 y�i ( �A)xTi ( �A)VT2 (8.42)where �i( �A) denotes the i-th eigenvalue of �A, xi( �A) and yi( �A) the relatedright and reiproal left eigenvetors, respetively. Notingj�i( �A)j =q��i ( �A)�i( �A) (8.43)leads to�j�i( �A)j�X = 12p��i ( �A)�i( �A) ����i ( �A)�X �i( �A) + ��i ( �A)��i( �A)�X �= 12j�i( �A)j ����i( �A)�X �� �i( �A) + ��i ( �A)��i( �A)�X �= 1j�i( �A)jRe ���i ( �A)��i( �A)�X �= 1j�i( �A)jVT1 Re ���i ( �A)y�i ( �A)xTi ( �A)�VT2 (8.44)The losed-loop system matrix (8.5) has the following equivalent forms:�A(w) = � A+BMC BJGC+HMC HJ �+ �0I �F [0 I ℄ (8.45)�A(w) = �A+BMC BJHMC F+HJ �+ �0I �G [C 0 ℄ (8.46)�A(w) = � A+BMC 0GC+HMC F �+ �BH �J [ 0 I ℄ (8.47)�A(w) = � A BJGC F+HJ �+ �BH �M [C 0 ℄ (8.48)�A(w) = �A+BMC BJGC F �+ �0I �H [MC J ℄ (8.49)Using (8.44) in (8.45){(8.49) leads to (8.18){(8.22). �



8 Pole-sensitivity Approah 127B Appendix - Adaptive Simulated AnnealingThe ASA is a global optimization sheme for solving for the following generaloptimization problem:minx2X J(x) (8.50)It evolves a single point x = [x1 � � �xD ℄T in the parameter or state spae X .The seemingly random searh is guided by ertain underlying probability dis-tributions. Spei�ally, the general algorithm is desribed by three funtions.1. Generating probability density funtionG(xoldi ; xnewi ; Ti; 1 � i � D) (8.51)This determines how a new state xnew is reated, and from what neighbour-hood and probability distributions it is generated, given the urrent statexold. The generating \temperatures" Ti desribe the widths or sales of thegenerating distribution along eah dimension xi of the state spae.Often a ost funtion has di�erent sensitivities along di�erent dimensionsof the state spae. Ideally, the generating distribution used to searh a steeperand more sensitive dimension should have a narrower width than that of thedistribution used in searhing a dimension less sensitive to hange. The ASAadopts a so-alled reannealing sheme to periodially re-sale Ti, so thatthey optimally adapt to the urrent status of the ost funtion. This is animportant mehanism, whih not only speeds up the searh proess but alsomakes the optimization proess robust to di�erent problems.2. Aeptane funtionPaept(J(xold); J(xnew); T) (8.52)This gives the probability of xnew being aepted. The aeptane tempera-ture T determines the frequeny of aepting new states of poorer quality.Probability of aeptane is very high at very high temperature T, andit beomes smaller as T is redued. At every aeptane temperature, thereis a �nite probability of aepting the new state. This produes oasionallyuphill move, enables the algorithm to esape from loal minima, and allows amore e�etive searh of the state spae to �nd a global minimum. The ASAalso periodially adapts T to best suit the status of the ost funtion. Thishelps to improve onvergene speed and robustness.3. Redue temperatures or annealing sheduleT(k) �! T(k + 1)Ti(ki) �! Ti(ki + 1); 1 � i � D) (8.53)where k and ki are some annealing time indexes. The redution of temper-atures should be suÆiently gradual in order to ensure that the algorithm�nds a global minimum.
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Fig. 8.3. Flow hart of the adaptive simulated annealing.This mehanism is based on the observations of the physial annealingproess. When the metal is ooled from a high temperature, if the ooling issuÆiently slow, the atoms line themselves up and form a rystal, whih isthe state of minimum energy in the system. The annealing proess usuallymust onverge very slowly to ensure a global optimum. The ASA, however,an employ a very fast annealing shedule, as it has self adaptation abilityto re-sale temperatures.An implementation of the ASA algorithm, shown in Fig. 8.3, is detailedas follows.(i) Initialisation An initial x is randomly generated, the initial tempera-ture of the aeptane probability funtion, T(0), is set to the initialvalue of the ost funtion J(x), and the initial temperatures of the pa-rameter generating probability funtions, Ti(0), 1 � i � D, are set to 1.0.



8 Pole-sensitivity Approah 129A ontrol parameter  in annealing proess is given, and the annealingtimes, ki for 1 � i � D and k, are all set to 0.(ii) Generating The algorithm generates a new point in the parameterspae with:xnewi = xoldi + gi (Ui � Vi) andxnewi 2 [Ui; Vi℄; 1 � i � D: (8.54)Here Ui and Vi are the lower and upper bounds for xi, gi is alulated asgi = sgn�ui � 12�Ti(ki) �1 + 1Ti(ki)�j2ui�1j � 1! ; (8.55)and ui a uniformly distributed random variable in [0; 1℄. The value of theost funtion J(xnew) is then evaluated and the aeptane probabilityfuntion of xnew is given byPaept = 11 + exp ((J(xnew)� J(xold)) =T(k)) : (8.56)A uniform random variable Punif is generated in [0; 1℄. If Punif � Paept,xnew is aepted; otherwise it is rejeted.(iii) Reannealing After every Naept aeptane points, alulating thesensitivities:si = ����J(xbest + 1i Æ)� J(xbest)Æ ���� ; 1 � i � D; (8.57)where xbest is the best point found so far, Æ is a small step size, the D-dimensional vetor 1i has unit ith element and the rest of elements of 1iare all zeros. Let smax = maxfsi; 1 � i � Dg. Eah Ti is saled by afator smax=si and the annealing time ki is reset:Ti(ki) = smaxsi Ti(ki); ki = ��1 log�Ti(ki)Ti(0) ��D : (8.58)Similarly, T(0) is reset to the value of the last aepted ost funtion,T(k) is reset to J(xbest) and the annealing time k is resaled aord-ingly:k = ��1 log�T(k)T(0) ��D : (8.59)(iv) Annealing After every Ngenera generated points, annealing takes plaewith ki = ki + 1Ti(ki) = Ti(0) exp��k 1Di �) 1 � i � D (8.60)



130 Sheng Chen and Jun Wuand k = k + 1T(k) = T(0) exp��k 1D �) : (8.61)Otherwise, goto step (ii).(v) Termination The algorithm is terminated if the parameters has re-mained unhanged for a few suessive reannealings or a preset maximumnumber of ost funtion evaluations has been reahed; Otherwise, gotostep (ii).
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