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8 The Determination of Optimal FinitePre
ision Controller Realizations Using aGlobal Optimization Strategy: aPole-sensitivity Approa
h
Sheng Chen1 and Jun Wu21 Department of Ele
troni
s and Computer S
ien
e, University of Southampton,U.K.2 Institute of Advan
ed Pro
ess Control, Zhejiang University, Hangzhou, P.R.ChinaAbstra
t. The pole-sensitivity approa
h is a general method for analyzing thestability of the dis
rete-time 
ontrol system with a �nite wordlength (FWL) imple-mented digital 
ontroller. It leads to a non-smooth and non-
onvex optimizationframework, where an optimal 
ontroller realization 
an be designed by maximizingsome stability related measure. In this 
ontribution, a new stability related measureis derived, whi
h is more a

urate in estimating the 
losed-loop stability robustnessof an FWL implemented 
ontroller than the existing measures of pole-sensitivityanalysis. This improved stability related measure provides a better 
riterion to �ndthe optimal FWL realizations for a generi
 
ontroller stru
ture that in
ludes output-feedba
k and observer-based 
ontrollers. An eÆ
ient global optimization strategy
alled the adaptive simulated annealing (ASA) is adopted to solve for the resultingoptimization problem. A numeri
al example is in
luded to verify the theoreti
alanalysis and to illustrate the design pro
edure.8.1 Introdu
tionThe 
lassi
al 
ontroller design methodology often assumes that the 
ontrolleris implemented exa
tly, even though in reality a 
ontrol law 
an only be real-ized in �nite pre
ision. The justi�
ation of this assumption is usually on thegrounds that the plant un
ertainty is the most signi�
ant sour
e of un
er-tainty in the 
ontrol system. However, resear
hers have realized that the 
on-troller un
ertainty 
aused by �nite-pre
ision implementation has signi�
antin
uen
e on the performan
e of the 
ontrol system. A designed stable 
on-trol system may a
hieve a lower than predi
ted performan
e or even be
omeunstable when the 
ontrol law is implemented with a �nite-pre
ision devi
edue to the FWL e�e
ts. This is highlighted in the so-
alled fragility puzzles[1℄{[3℄: 
ertain high-performan
e robust optimal 
ontrollers are known to be



114 Sheng Chen and Jun Wufragile. Ironi
ally, these 
ontrollers have been designed to tolerate un
ertaintyin the plant, and yet small perturbations on the 
ontroller parameters may
ause the designed 
losed-loop system to go unstable.The fragility issues are strongly related to and inter
onne
ted with theFWL 
ontroller implementation issues. Although the number of 
ontrollerimplementations using 
oating-point pro
essors is in
reasing due to their re-du
ed pri
e, for reasons of 
ost, simpli
ity, speed, memory spa
e and power
onsumption, the use of �xed-point pro
essors is more desired for manyindustrial and 
onsumer appli
ations. Furthermore, due to their reliabilityand well-understood properties, �xed-point pro
essors predominate in safety-
riti
al systems. With a �xed-point pro
essor, however, the detrimental FWLe�e
ts are markedly in
reased due to a redu
ed pre
ision. The problem 
anbe
ome serious when a high sampling rate and a high-order 
ontroller areused. It has been noted that a 
ontroller design 
an be implemented withdi�erent realizations and that the FWL e�e
t on the 
losed-loop stabilitydepends on the 
ontroller realization stru
ture. This property 
an be utilizedto sele
t 
ontroller realization in order to improve the robustness of 
losed-loop stability under 
ontroller perturbations. Currently, two approa
hes existfor determining the optimal 
ontroller realizations under di�erent 
riteria,namely pole-sensitivity measures [4℄-[8℄ and 
omplex stability radius mea-sures [9℄,[10℄.In the �rst approa
h, pole-sensitivity measures [5℄,[6℄ are used to quantifythe FWL e�e
t, leading to a non-
onvex and non-smooth optimization prob-lem in �nding an optimal FWL 
ontroller realization. The need to solve for anon-
onvex and non-smooth optimization problem had been seen as a disad-vantage, as 
onventional optimization algorithms [11℄,[12℄, whi
h are betterknown to the 
ontrol 
ommunity, may not guarantee to �nd a true optimalrealization. However, the eÆ
ient global optimization te
hniques [13℄-[18℄ tota
kle this kind of diÆ
ult optimization problems are now widely available.Moreover, the pole-sensitivity approa
h is very general and 
an be appliedto output-feedba
k and observer-based 
ontrollers as well as the 
ontrollersthat are parameterized either by the usual shift operator or the delta opera-tor [8℄, [19℄{[21℄. More re
ently, Fialho and Georgiou [10℄ used the 
omplexstability radius measure to formulate an optimal FWL 
ontroller realizationproblem that 
an be represented as a spe
ial H1-norm minimization problemand solved for with the method of linear matrix inequality. In this se
ond ap-proa
h, the FWL perturbations are assumed to be 
omplex-valued. Althoughthis assumption is somewhat arti�
ial and the approa
h 
an only be appliedto shift-operator based output-feedba
k 
ontrollers, the method does not re-quire to solve for a nonlinear optimization problem and has 
ertain attra
tivefeatures. For a detailed treatment of this approa
h, see Chapter .This 
ontribution fo
uses on the pole-sensitivity analysis method and em-phasizes a uni�ed approa
h for analyzing the sensitivity of 
losed-loop sta-bility with respe
t to FWL e�e
ts. A generi
 digital 
ontroller stru
ture is
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Fig. 8.1. Dis
rete-time 
losed-loop system with a generi
 digital 
ontroller.
onsidered that in
ludes output-feedba
k and observer-based 
ontrollers, anda new stability related measure is proposed for the uni�ed 
ontroller stru
-ture. An eÆ
ient global optimization pro
edure based on the ASA algorithm[16℄{[18℄ is developed to �nd the optimal 
ontroller realization that maximizesthis new measure. Through theoreti
al analysis and numeri
al results, it isshown that this improve measure is less 
onservative in estimating the FWL
losed-loop stability robustness of a 
ontroller realization than the existingpole-sensitivity measures [5℄,[6℄.8.2 Problem FormulationConsider the dis
rete-time 
losed-loop 
ontrol system shown in Fig. 8.1, wherethe linear time-invariant plant P is des
ribed by�x(k + 1) = Ax(k) +Be(k)y(k) = Cx(k) (8.1)whi
h is 
ompletely state 
ontrollable and observable with A 2 Rn�n , B 2Rn�p and C 2 Rq�n ; and the generi
 digital stabilizing 
ontroller C is de-s
ribed by�v(k + 1) = Fv(k) +Gy(k) +He(k)u(k) = Jv(k) +My(k) (8.2)with F 2 Rm�m , G 2 Rm�q , J 2 Rp�m , M 2 Rp�q and H 2 Rm�p .The output-feedba
k and observer-based 
ontrollers 
an be uni�ed in thisgeneral stru
ture: C is an output-feedba
k 
ontroller when H = 0; a full-order observer-based 
ontroller when F = A � GC, M = 0 and H = B;a redu
ed-order observer-based 
ontroller, otherwise [22℄,[23℄. Noti
e that,for notational simpli
ity, we have restri
ted to the 
ontroller stru
ture withthe shift operator z parameterization. All the results, however, 
an readily be
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ontroller stru
ture with the delta operator parameterization[19℄{[21℄.Assume that a realization (F0;G0;J0;M0;H0) of C has been designed.It is well-known that the realizations of C are not unique. All the realizationsof C form the set:S = f(F;G;J;M;H) : F = T�1F0T;G = T�1G0;J = J0T;M =M0;H = T�1H0g (8.3)where T 2 Rm�m is any real-valued non-singular matrix, 
alled a similaritytransformation. Let wF = Ve
(F), with Ve
(�) de�ning the 
olumn sta
kingoperator. Denotew = 24 w1...wN 35 , 26664 wFwGwJwMwH 37775 ; w0 , 26664 wF0wG0wJ0wM0wH0 37775 (8.4)where N = (m + p)(m + q) +mp. We also refer to w as a realization of C.The stability of the 
losed-loop system in Fig. 8.1 depends on the eigenvaluesof the matrix�A(w) = � A+BMC BJGC+HMC F+HJ � = � I 00 T�1 � �A(w0) � I 00 T � (8.5)All the di�erent realizationsw in S are 
ompletely equivalent and, in parti
u-lar, a
hieve exa
tly the same set of 
losed-loop poles, if they are implementedwith in�nite pre
ision. Sin
e the 
losed-loop system will have been designedto be stable, the eigenvaluesj�i( �A(w))j = j�i( �A(w0))j < 1; 8i 2 f1; : : : ;m+ ng (8.6)When a w is implemented with a �xed-point pro
essor, it is perturbedinto w + �w due to the FWL e�e
t. Ea
h element of �w is bounded by��=2,k�wk1 , maxi2f1;���;Ng j�wij � �=2 (8.7)For a �xed point pro
essor of Bs bits, let Bs = Bi + Bf , where 2Bi is a\normalization" fa
tor to make the absolute value of ea
h element of 2�Biwno larger than 1. Thus, Bi are bits required for the integer part of a numberand Bf are bits used to implement the fra
tional part of a number. It 
aneasily be seen that� = 2�Bf (8.8)With the perturbation �w, �i( �A(w)) is moved to �i( �A(w + �w)). If aneigenvalue of �A(w +�w) is outside the open unit disk, the 
losed-loop sys-tem, designed to be stable, be
omes unstable with Bs-bit implemented w.
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h 117It is therefore 
riti
al to know when the FWL error will 
ause 
losed-loopinstability. This ultimately means that we would like to know the largestopen \sphere" in the 
ontroller perturbation spa
e, within whi
h 
losed-loopremains stable. The size or radius of this \sphere" is de�ned by:�0(w) 4= inffk�wk1 : �A(w +�w) is unstableg (8.9)From the de�nition of �0(w), it is obvious that �A(w +�w) remains stablefor any �w with k�wk1 < �0(w). The larger �0(w) is, the larger FWLerror the 
losed-loop stability 
an tolerate. Hen
e, �0(w) 
onstitutes a FWLstability measure.Let Bmins be the smallest wordlength, when used to implement w, 
anguarantee the 
losed-loop stability. An estimate of Bmins 
an be obtained asB̂mins;0 = Bi + Int[� log2(�0(w))℄� 1 (8.10)where the integer Int[x℄ � x. It 
an easily be seen that the 
losed-loop systemremains stable if w is implemented with a �xed-point pro
essor of at leastB̂mins;0 . Moreover, �0(w) is a fun
tion of the 
ontroller realization w, we 
ouldsear
h for an optimal realization that maximizes �0(w). However, it is notknown yet how to 
ompute the value of �0(w) given a realization w. Apra
ti
al solution is to 
onsider a lower bound of the stability measure �0(w)in some sense, whi
h is 
omputationally tra
table. This in e�e
t de�nes asmaller but known stable \sphere" or region in the �w spa
e. Obviously, the
loser su
h a lower bound is to �0(w), the better. Two existing pole-sensitivitymeasures [5℄,[6℄ 
an both be regarded as su
h lower bounds and, hen
e, termedstability related measures. It should be emphasized that the approa
h basedon the 
omplex stability radius measure [10℄ is also \
onservative" in that theregion de�ned by the 
omplex stability radius measure is generally smallerthan that de�ned by �0(w).8.3 A New Pole-sensitivity Stability Related MeasureRoughly speaking, how easily the FWL error �w 
an 
ause a stable 
ontrolsystem to be
ome unstable is determined by how 
lose ���i( �A(w))�� are to1 and how sensitive they are to the 
ontroller parameter perturbations. Wepropose the following FWL stability related measure1�1I(w) , mini2f1;���;m+ng 1� ���i( �A(w))���i(w) (8.11)with�i(w) , XX=F;G;J;M;H




� ���i( �A(w))���X 




1 (8.12)1 This measure, as shown later, is an improved version of the existing measure �1given in [6℄ and hen
e is denoted with �1I .



118 Sheng Chen and Jun Wuwhere, for a matrix X 2 C s�v , the 1-norm kXk1 is de�ned askXk1 , sXi=1 vXj=1 jxij j (8.13)It remains to be shown how �1I(w) 
an be regarded as an FWL stabilityrelated measure, under what 
onditions �1I(w) is a lower bound of �0(w),and that �1I (w) is 
omputationally tra
table.In pra
ti
e, those 
ontroller perturbations �w that will not 
ause 
losed-loop instability are most important. These �w lie in the bound region:Q(w) , f�w : k�wk1 < �0(w)g (8.14)De�ne a perturbation subset to the 
ontroller realization w to beP(w) 4= f�w : ���i( �A(w +�w))��� ���i( �A(w))�� � k�wk1 � �i(w);8ig(8.15)It is straightforward to prove the following proposition.Proposition 8.1. �A(w + �w) is stable if �w 2 P(w) and k�wk1 <�1I(w).Thus, �1I(w) is a stability measure for �w 2 P(w). The requirement for�w 2 P(w) is not over restri
ted. Similar to the dis
ussions in [19℄,[8℄, it 
anbe proved that P(w) exists and at least a large part of Q(w) is 
overed byP(w). De�ning� (P(w)) , inf�w=2P(w) k�wk1 (8.16)we have the following 
orollary, the proof of whi
h is also straightforward.Corollary 8.1. �1I(w) � �0(w) if �(P(w)) > �0(w).It 
an be seen that �1I (w) is a lower bound of �0(w), provided that �0(w)is small enough. The assumption of small �0(w) is generally valid, espe
iallyfor 
ontrol systems with fast sampling. Given a 
ontroller realization w, thevalue of �1I (w) 
an readily be 
al
ulated. This is summarized in the followingtheorem, the proof of whi
h is given in Appendix A.Theorem 8.1. Let xi( �A(w)) and yi( �A(w)) be the right and re
ipro
al lefteigenve
tors related to the �i( �A(w)), respe
tively, andLi(w) = Re ���i ( �A(w))y�i ( �A(w))xTi ( �A(w))����i( �A(w))�� (8.17)where � denotes the 
onjugate operator, T the transpose operator, and Re[�℄the real part. Then,� ���i( �A(w))���F = [0 I ℄Li(w) �0I � (8.18)
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h 119� ���i( �A(w))���G = [0 I ℄Li(w) �CT0 � (8.19)� ���i( �A(w))���J = [BT HT ℄Li(w) � 0I � (8.20)� ���i( �A(w))���M = [BT HT ℄Li(w) �CT0 � (8.21)� ���i( �A(w))���H = [0 I ℄Li(w) �CTMTJT � (8.22)Similar to (8.10), an estimate of Bmins 
an be provided with �1I (w) byB̂mins;1I = Bi + Int[� log2(�1I (w))℄� 1 (8.23)Provided that the 
onditions of Proposition 8.1 and Corollary 8.1 are met,B̂mins;1I � B̂mins;0 � Bmins . That is, B̂mins;1I is a 
onservative estimate of the min-imum bit length, 
ompared with B̂mins;0 . Unlike B̂mins;0 , however, B̂mins;1I 
an be
omputed easily. We now show that �1I(w) is a 
loser lower bound of �0(w)than the two existing pole-sensitivity measures [5℄,[6℄, denoted as �2(w) and�1(w), respe
tively. Sin
e it has been demonstrated [6℄ that �1(w) is a 
loserlower bound of �0(w) than �2(w), we only need to 
ompare �1I(w) with�1(w). The stability related measure �1(w) is de�ne as [6℄:�1(w) 4= mini2f1;���;m+ng 1� ���i( �A(w))���i(w) (8.24)with�i(w) , XX=F;G;J;M;H



��i( �A(w))�X 



1 (8.25)An estimate of Bmins is provided with �1(w) byB̂mins;1 = Bi + Int[� log2(�1(w))℄� 1 (8.26)The key di�eren
e between �1I(w) and �1(w) is that the former 
onsid-ers the sensitivity of ���i( �A(w))�� while the latter 
onsiders the sensitivity of�i( �A(w)). It is well known that the stability of a linear dis
rete-time sys-tem depends only on the moduli of its eigenvalues. As �1(w) in
ludes theunne
essary eigenvalue arguments in 
onsideration, it is expe
ted that �1(w)is 
onservative in 
omparison with �1I(w). This 
an stri
tly be veri�ed withthe following. Noting� ���i( �A(w))���wj = Re ���i ( �A(w))��i( �A(w))�wj � = ���i( �A(w))�� (8.27)



120 Sheng Chen and Jun Wugives rise to������ ���i( �A(w))���wj ����� � �����i ( �A(w))��i( �A(w))�wj ������i( �A(w))�� = ������i( �A(w))�wj ���� (8.28)whi
h means that �i(w) � �i(w). This leads to:Theorem 8.2. �1(w) � �1I (w) and B̂mins;1 � B̂mins;1I .8.4 Optimization Pro
edureWhen a 
ontroller is designed, it will have satis�ed 
ertain performan
e 
ri-teria and, in parti
ular, ensures 
losed-loop stability. The design, however,is usually done under the in�nite or at least high pre
ision assumption. Asa
tual implementation 
an only be �nite pre
ision, the real 
ontroller perfor-man
e may be quite di�erent from the designed one and, if the bit lengthis too small, the 
losed-loop stability may even be lost. Given a designed
ontroller realization, denoted as w0, there are in�nite many realizations wrelated to w0 by (8.3). All these realizations are 
ompletely equivalent underin�nite pre
ision implementation, but they may perform di�erently underFWL implementation. The problem naturally arisen is to �nd an \optimal"realization, denoted as wopt, su
h that �1I(w) is maximized. This is of pra
-ti
al importan
e, sin
e the 
ontroller implemented with wopt 
an tolerate amaximum FWL error. This optimal realization problem is formally de�nedas wopt = argmaxw2S �1I(w) (8.29)Given the design w0, 8i 2 f1; � � � ;m + ng, partition xi( �A(w0)) andyi( �A(w0)):xi( �A(w0)) = �xi;1( �A(w0))xi;2( �A(w0)) � (8.30)yi( �A(w0)) = �yi;1( �A(w0))yi;2( �A(w0)) � (8.31)where xi;1( �A(w0));yi;1( �A(w0)) 2 C n and xi;2( �A(w0));yi;2( �A(w0)) 2 Cm .It is easily seen from (8.5) thatxi( �A(w)) = � xi;1( �A(w0))T�1xi;2( �A(w0)) � (8.32)yi( �A(w)) = � yi;1( �A(w0))TTyi;2( �A(w0)) � (8.33)
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h 121From (8.18){(8.22), we have� ���i( �A(w))���F = TTLi;2;2(w0)T�T (8.34)� ���i( �A(w))���G = TTLi;2;1(w0)CT (8.35)� ���i( �A(w))���J = �BTLi;1;2(w0) +HT0 Li;2;2(w0)�T�T (8.36)� ���i( �A(w))���M = �BTLi;1;1(w0) +HT0 Li;2;1(w0)�CT (8.37)� ���i( �A(w))���H = TT �Li;2;1(w0)CTMT0 + Li;2;2(w0)JT0 � (8.38)whereLi;j;l(w0) = Re h��i ( �A(w0))y�i;j( �A(w0))xTi;l( �A(w0))i���i( �A(w0))�� ; j; l = 1; 2 (8.39)De�ne the following 
ost fun
tion:f(T) , mini2f1;���;m+ng 1� j�i( �A(w0))j�i(w) = �1I (w) (8.40)The optimal realization problem (8.29) 
an then be posed as the followingoptimization problem of �nding an optimal similarity transformation matrix:Topt = arg maxT2Rm�mdet(T)6=0 f(T) (8.41)Although f(T) is non-smooth and non-
onvex, eÆ
ient global optimizationmethods exist for solving for this kind of optimization problem. The ASA[17℄,[18℄ is su
h an algorithm and is adopted to sear
h for a true global opti-mum Topt of the problem (8.41). The detailed ASA algorithm is provided inAppendix B. With Topt, the optimal 
ontroller realization wopt 
an readilybe obtained using the relationship (8.3).8.5 A Numeri
al ExampleA numeri
al example was used to illustrate the FWL optimal design pro-
edure based on the pole-sensitivity approa
h. The plant model used was
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ation of the plant studied in [5℄, whi
h was a single-input single-output system. One more output, the �rst state in the original plant model,was added. The state-spa
e model of this modi�ed plant was given byA = 266664 3:2439e� 1 �4:5451e+ 0 �4:0535e+ 0 �2:7003e� 3 01:4518e� 1 4:9477e� 1 �4:6945e� 1 �3:1274e� 4 01:6814e� 2 1:6491e� 1 9:6681e� 1 �2:2114e� 5 01:1889e� 3 1:8209e� 2 1:9829e� 1 1:0000e+ 0 06:1301e� 5 1:2609e� 3 1:9930e� 2 2:0000e� 1 1377775 ;B = 266664 1:4518e� 11:6814e� 21:1889e� 36:1301e� 52:4979e� 6377775 ;C = �0 0 1:6188e+ 0 �1:5750e� 1 �4:3943e+ 11 0 0 0 0 �The 
losed-loop poles as given in [5℄ were used in design, and the designedredu
ed-order observer-based 
ontroller obtained using a standard design pro-
edure [23℄ had the form:F0 = � 0 1�9:3303e� 1 1:9319e+ 0 � ;G0 = �4:1814e� 2 2:7132e+ 23:9090e� 2 1:0167e+ 3� ;J0 = [ 3:0000e� 4 5:0000e� 4 ℄ ;M0 = [ 0 6:1250e� 1 ℄ ; H0 = � 7:8047e+ 17:3849e+ 1 �With this initial 
ontroller realization w0 and the plant model, the opti-mization problem (8.41) was formed and solved for, giving rise to the followingoptimal similarity transformation matrix:Topt = � 1:4714e+ 1 3:2071e+ 11:3588e+ 1 3:0531e+ 1�From Topt, the 
orresponding optimal 
ontroller realization wopt was deter-mined:Fopt = � 9:8677e� 1 1:4943e� 2�2:9047e� 2 9:4511e� 1� ;Gopt = �1:7066e� 3 �1:8080e+ 35:2084e� 4 8:3794e+ 2� ;
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h 123Jopt = [ 1:1208e� 2 2:4887e� 2 ℄ ;Mopt = [ 0 6:1250e� 1 ℄ ; Hopt = � 1:0691e+ 01:9430e+ 0�For the initial and optimal 
ontroller realizations, the true minimal bit lengthsBmins that 
an guarantee the 
losed-loop stability were also determined usinga 
omputer simulation method. Table 8.1 
ompares the values of the twostability related measures, 
orresponding estimated minimum bit lengths andtrue minimum bit lengths for the initial and optimal 
ontroller realizations.The results 
learly show that the new measure �1I is mu
h less 
onservativethan the existing measure �1 in estimating the true minimum bit length.Table 8.1. Comparison of the two stability related measures, 
orresponding es-timated minimum bit lengths and true minimum bit lengths for the initial andoptimal 
ontroller realizations.realization �1I B̂mins;1I �1 B̂mins;1 Bminsw0 2.556877e-6 28 4.050854e-7 31 22wopt 8.696940e-5 24 3.012354e-6 29 21The unit impulse response of the 
losed-loop 
ontrol system when the 
on-trollers were the in�nite-pre
ision implemented w0 and various FWL imple-mented realizations were also 
omputed. Noti
e that any realization w 2 S,implemented in in�nite pre
ision, will a
hieve the exa
t performan
e of thein�nite-pre
ision implemented w0, whi
h is the designed 
ontroller perfor-man
e. For this reason, the in�nite-pre
ision implemented w0 is referred toas the ideal 
ontroller realization wideal. Fig. 8.2 
ompares the unit impulseresponse of the �rst plant output y1(k) for the ideal 
ontroller implemen-tation wideal with those of 21-bit implemented realizations w0 and wopt. It
an be seen that the 
losed-loop be
ame unstable with a 21-bit implemented
ontroller realization w0. However, the 
losed-loop system remained stablewith the 21-bit implemented wopt.8.6 Con
lusionsThe pole-sensitivity approa
h has been adopted to address the stability issueof the 
losed-loop dis
rete-time 
ontrol system where a digital 
ontroller isimplemented with a �xed-point pro
essor. A new FWL 
losed-loop stabilityrelated measure has been derived, whi
h is a less 
onservative lower boundof the 
omputationally intra
table true stability measure than other exist-ing measures of the pole-sensitivity approa
h. As this new stability relatedmeasure is a fun
tion of the 
ontroller realization, it 
an be used as a 
ost
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Fig. 8.2. Comparison of unit impulse response for the in�nite-pre
ision 
ontrollerimplementation wideal with those for the 21-bit implemented 
ontroller realizationsw0 and wopt.fun
tion for obtaining an optimal 
ontroller realization that maximizes theproposed measure. An eÆ
ient optimization strategy has been developed foroptimizing a uni�ed 
ontroller stru
ture whi
h in
ludes output-feedba
k andobserver-based 
ontrollers.A
knowledgementsThe authors wish to thank the support of the UK Royal So
iety under a KCWong fellowship (RL/ART/CN/XFI/KCW/11949).Referen
es1. L.H. Keel and S.P. Bhatta
harryya, \Robust, fragile, or optimal?" IEEE Trans.Automati
 Control, Vol.42, No.8, pp.1098{1105, 1997.2. P.M. M�akil�a, \Comments on `Robust, fragile, or optimal?'," IEEE Trans. Au-tomati
 Control, Vol.43, No.9, pp.1265{1267, 1998.3. P.M. M�akil�a, \Fragility and robustness puzzles," in Pro
. Ameri
an ControlConf. (San Diego, CA, USA), June 2-4, 1999, pp.2914{2919.4. M. Gevers and G. Li, Parameterizations in Control, Estimation and FilteringProblems: A

ura
y Aspe
ts. London: Springer Verlag, 1993.5. G. Li, \On the stru
ture of digital 
ontrollers with �nite word length 
onsider-ation," IEEE Trans. Automati
 Control, Vol.43, pp.689{693, 1998.6. R.H. Istepanian, G. Li, J. Wu and J. Chu, \Analysis of sensitivity measures of�nite-pre
ision digital 
ontroller stru
tures with 
losed-loop stability bounds,"IEE Pro
. Control Theory and Appli
ations, Vol.145, No.5, pp.472{478, 1998.



8 Pole-sensitivity Approa
h 1257. S. Chen, J. Wu, R.H. Istepanian and J. Chu, \Optimizing stability boundsof �nite-pre
ision PID 
ontroller stru
tures," IEEE Trans. Automati
 Control,Vol.44, No.11, pp.2149{2153, 1999.8. J. Wu, S. Chen, G. Li and J. Chu, \Optimal �nite-pre
ision state-estimate feed-ba
k 
ontroller realization of dis
rete-time systems," IEEE Trans. Automati
Control, Vol.45, No.7, July 2000.9. I.J. Fialho and T.T. Georgiou, \On stability and performan
e of sampled datasystems subje
t to word length 
onstraint," IEEE Trans. Automati
 Control,Vol.39, No.12, pp.2476{2481, 1994.10. I.J. Fialho and T.T. Georgiou, \Optimal �nite worldlength digital 
ontrollerrealization," in Pro
. Ameri
an Control Conf. (San Diego, CA, USA), June 2-4,1999, pp.4326-4327.11. G.S.G. Beveridge and R.S. S
he
hter, Optimization: Theory and Pra
ti
e.M
Graw-Hill, 1970.12. L.C.W. Dixon, Nonlinear Optimisation. London: The English Universities PressLtd, 1972.13. D.E. Goldberg, Geneti
 Algorithms in Sear
h, Optimisation and Ma
hineLearning. Addison Wesley, 1989.14. K.F. Man, K.S. Tang and S. Kwong, Geneti
 Algorithms: Con
epts and Design.London: Springer-Verlag, 1998.15. C.M. Fonse
a and P.J. Fleming, \Multiobje
tive optimization and multiple 
on-straint handling with evolutionary algorithms { Part I: A uni�ed formulation,"IEEE Trans. Systems, Man, and Cyberneti
s Part A: Systems and Humans,Vol.28, No.1, pp.26{37, 1998.16. L. Ingber, \Simulated annealing: pra
ti
e versus theory," Mathemati
al andComputer Modelling, Vol.18, No.11, pp.29{57, 1993.17. L. Ingber, \Adaptive simulated annealing (ASA): lessons learned," J. Controland Cyberneti
s, Vol.25, No.1, pp.33-54, 1996.18. S. Chen and B.L. Luk, \Adaptive simulated annealing for optimization in signalpro
essing appli
ations," Signal Pro
essing, Vol.79, No.11, pp.117-128, 1999.19. S. Chen, J. Wu, R.H. Istepanian, J. Chu and J.F. Whidborne, \Optimizing sta-bility bounds of �nite-pre
ision 
ontroller stru
tures for sampled-data systemsin the delta operator domain," IEE Pro
. Control Theory and Appli
ations,Vol.146, No.6, pp.517{526, 1999.20. S. Chen, R.H. Istepanian, J. Wu and J. Chu, \Comparative study on optimizing
losed-loop stability bounds of �nite-pre
ision 
ontroller stru
tures with shiftand delta operators," Systems and Control Letters, Vol.40, No.3, pp.153{163,2000.21. J. Wu, S. Chen, G. Li, R.H. Istepanian and J. Chu, \Shift and delta operatorrealizations for digital 
ontrollers with �nite-word-length 
onsiderations," IEEPro
. Control Theory and Appli
ations, to appear, 2001.22. T. Kailath, Linear Systems. Prenti
e-Hall, 1980.23. J. O'Reilly, Observers for Linear Systems. London: A
ademi
 Press, 1983.



126 Sheng Chen and Jun WuA Appendix - Theorem ProofProof. Let the real-valued square matrix �A = V0+V1XV2 be diagonalisable,where all the matri
es 
on
erned are real-valued with proper dimensions, andV0, V1 and V2 are independent of X. From Lemma 1 in [5℄,��i( �A)�X = VT1 y�i ( �A)xTi ( �A)VT2 (8.42)where �i( �A) denotes the i-th eigenvalue of �A, xi( �A) and yi( �A) the relatedright and re
ipro
al left eigenve
tors, respe
tively. Notingj�i( �A)j =q��i ( �A)�i( �A) (8.43)leads to�j�i( �A)j�X = 12p��i ( �A)�i( �A) ����i ( �A)�X �i( �A) + ��i ( �A)��i( �A)�X �= 12j�i( �A)j ����i( �A)�X �� �i( �A) + ��i ( �A)��i( �A)�X �= 1j�i( �A)jRe ���i ( �A)��i( �A)�X �= 1j�i( �A)jVT1 Re ���i ( �A)y�i ( �A)xTi ( �A)�VT2 (8.44)The 
losed-loop system matrix (8.5) has the following equivalent forms:�A(w) = � A+BMC BJGC+HMC HJ �+ �0I �F [0 I ℄ (8.45)�A(w) = �A+BMC BJHMC F+HJ �+ �0I �G [C 0 ℄ (8.46)�A(w) = � A+BMC 0GC+HMC F �+ �BH �J [ 0 I ℄ (8.47)�A(w) = � A BJGC F+HJ �+ �BH �M [C 0 ℄ (8.48)�A(w) = �A+BMC BJGC F �+ �0I �H [MC J ℄ (8.49)Using (8.44) in (8.45){(8.49) leads to (8.18){(8.22). �



8 Pole-sensitivity Approa
h 127B Appendix - Adaptive Simulated AnnealingThe ASA is a global optimization s
heme for solving for the following generaloptimization problem:minx2X J(x) (8.50)It evolves a single point x = [x1 � � �xD ℄T in the parameter or state spa
e X .The seemingly random sear
h is guided by 
ertain underlying probability dis-tributions. Spe
i�
ally, the general algorithm is des
ribed by three fun
tions.1. Generating probability density fun
tionG(xoldi ; xnewi ; Ti; 1 � i � D) (8.51)This determines how a new state xnew is 
reated, and from what neighbour-hood and probability distributions it is generated, given the 
urrent statexold. The generating \temperatures" Ti des
ribe the widths or s
ales of thegenerating distribution along ea
h dimension xi of the state spa
e.Often a 
ost fun
tion has di�erent sensitivities along di�erent dimensionsof the state spa
e. Ideally, the generating distribution used to sear
h a steeperand more sensitive dimension should have a narrower width than that of thedistribution used in sear
hing a dimension less sensitive to 
hange. The ASAadopts a so-
alled reannealing s
heme to periodi
ally re-s
ale Ti, so thatthey optimally adapt to the 
urrent status of the 
ost fun
tion. This is animportant me
hanism, whi
h not only speeds up the sear
h pro
ess but alsomakes the optimization pro
ess robust to di�erent problems.2. A

eptan
e fun
tionPa

ept(J(xold); J(xnew); T
) (8.52)This gives the probability of xnew being a

epted. The a

eptan
e tempera-ture T
 determines the frequen
y of a

epting new states of poorer quality.Probability of a

eptan
e is very high at very high temperature T
, andit be
omes smaller as T
 is redu
ed. At every a

eptan
e temperature, thereis a �nite probability of a

epting the new state. This produ
es o

asionallyuphill move, enables the algorithm to es
ape from lo
al minima, and allows amore e�e
tive sear
h of the state spa
e to �nd a global minimum. The ASAalso periodi
ally adapts T
 to best suit the status of the 
ost fun
tion. Thishelps to improve 
onvergen
e speed and robustness.3. Redu
e temperatures or annealing s
heduleT
(k
) �! T
(k
 + 1)Ti(ki) �! Ti(ki + 1); 1 � i � D) (8.53)where k
 and ki are some annealing time indexes. The redu
tion of temper-atures should be suÆ
iently gradual in order to ensure that the algorithm�nds a global minimum.
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Fig. 8.3. Flow 
hart of the adaptive simulated annealing.This me
hanism is based on the observations of the physi
al annealingpro
ess. When the metal is 
ooled from a high temperature, if the 
ooling issuÆ
iently slow, the atoms line themselves up and form a 
rystal, whi
h isthe state of minimum energy in the system. The annealing pro
ess usuallymust 
onverge very slowly to ensure a global optimum. The ASA, however,
an employ a very fast annealing s
hedule, as it has self adaptation abilityto re-s
ale temperatures.An implementation of the ASA algorithm, shown in Fig. 8.3, is detailedas follows.(i) Initialisation An initial x is randomly generated, the initial tempera-ture of the a

eptan
e probability fun
tion, T
(0), is set to the initialvalue of the 
ost fun
tion J(x), and the initial temperatures of the pa-rameter generating probability fun
tions, Ti(0), 1 � i � D, are set to 1.0.
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h 129A 
ontrol parameter 
 in annealing pro
ess is given, and the annealingtimes, ki for 1 � i � D and k
, are all set to 0.(ii) Generating The algorithm generates a new point in the parameterspa
e with:xnewi = xoldi + gi (Ui � Vi) andxnewi 2 [Ui; Vi℄; 1 � i � D: (8.54)Here Ui and Vi are the lower and upper bounds for xi, gi is 
al
ulated asgi = sgn�ui � 12�Ti(ki) �1 + 1Ti(ki)�j2ui�1j � 1! ; (8.55)and ui a uniformly distributed random variable in [0; 1℄. The value of the
ost fun
tion J(xnew) is then evaluated and the a

eptan
e probabilityfun
tion of xnew is given byPa

ept = 11 + exp ((J(xnew)� J(xold)) =T
(k
)) : (8.56)A uniform random variable Punif is generated in [0; 1℄. If Punif � Pa

ept,xnew is a

epted; otherwise it is reje
ted.(iii) Reannealing After every Na

ept a

eptan
e points, 
al
ulating thesensitivities:si = ����J(xbest + 1i Æ)� J(xbest)Æ ���� ; 1 � i � D; (8.57)where xbest is the best point found so far, Æ is a small step size, the D-dimensional ve
tor 1i has unit ith element and the rest of elements of 1iare all zeros. Let smax = maxfsi; 1 � i � Dg. Ea
h Ti is s
aled by afa
tor smax=si and the annealing time ki is reset:Ti(ki) = smaxsi Ti(ki); ki = ��1
 log�Ti(ki)Ti(0) ��D : (8.58)Similarly, T
(0) is reset to the value of the last a

epted 
ost fun
tion,T
(k
) is reset to J(xbest) and the annealing time k
 is res
aled a

ord-ingly:k
 = ��1
 log�T
(k
)T
(0) ��D : (8.59)(iv) Annealing After every Ngenera generated points, annealing takes pla
ewith ki = ki + 1Ti(ki) = Ti(0) exp��
k 1Di �) 1 � i � D (8.60)
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 = k
 + 1T
(k
) = T
(0) exp��
k 1D
 �) : (8.61)Otherwise, goto step (ii).(v) Termination The algorithm is terminated if the parameters has re-mained un
hanged for a few su

essive reannealings or a preset maximumnumber of 
ost fun
tion evaluations has been rea
hed; Otherwise, gotostep (ii).
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