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Motivations

1 Standard radial basis function network is a model

O adopting black-box modelling approach is appropriate if no a prior:

information exists regarding underlying data generating mechanism

(1 If there are known prior knowledge concerning underlying process, they

should be incorporated into model structure explicitly

1 How to incorporate prior knowledge to form grey-box model is highly
problem dependent, and is really an

1 Two types of prior information are considered

O Underlying process exhibits known symmetry property

O Underlying process obeys a set of boundary value constraints

1 Existing learning algorithms can be applied to resulting grey-box models
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RBF Data Modelling

3 Give training data {x(k),y(k)};_, generated from nonlinear system

y(k) = f(x(k)) + e(k)
f(e) is unknown, and €(k) represents observation noise

J model
(k) = Fx(k)) = 3~ Oipik)

with RBF basis p;(k) = ¢ (||x(k) — c;||/o) specified by RBF centre c;

and RBF variance o2

1 Black-box, as every thing is learnt from data, which is inherently
stochastic

1 Efficient orthogonal least squares learning has been developed
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Early Orthogonal Least Squares

d Orthogonal least squares methods and their application to
non-linear system identification — S. Chen, S. A. Billings and

W. Luo - International Journal of Control, 1989

Go gle scholar citations: 467  ISI citations: 364 (July 2009)

d Orthogonal least squares learning algorithm for radial basis
function networks - S. Chen, C. F. N. Cowan and P. M. Grant -

IEEE Transactions on Neural Networks, 1991
Go gle scholar citations: 1660 ISI citations: 1160 (July 2009)

O Simple and efficient, and capable of producing parsimonious models with

good generalisation performance

O 20 year old, still popular with nonlinear data modelling practicians
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More Recent Enhancements

(1 Recent enhancements to orthogonal least squares learning include

O Local regularisation assisted OLS learning
O Optimal enhanced OLS learning

O OLS learning based on leave-one-out cross validation

(A These state-of-the-arts bring further benefits

O Enhance generalisation and sparseness
O Improve model robustness and reduce parameter estimate variances
O Select model terms by directly maximising generalisation capability

O as well as fully automatic model selection

1= [n developing RBF models, these OLS statistical learning al-
gorithms should readily be applicable
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Symmetric RBF Network

d Unknown system f(e) possesses f(—x) = —f(x)

15 e.g. from physics, underlying optimal discriminant function for BPSK
digital signals has old symmetry

1 Radial basis function model with standard node

pi(k) = ¢ ([[x(k) —cil /o)
iz cannot guarantee to have odd symmetry

d Symmetric RBF model with symmetric RBF node

pi(k) = ¢ ([x(k) = cill /o) = ¢ ([Ix(k) + cil|/o)

S to obey same odd symmetry as underlying process
1 incorporate prior information naturally into model structure

i all RBF learning methods applicable without any modification
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Symmetric Function Modelling

(a) Underlying function

sin(x1 — 5) sin(xe —5)  sin(z1 + 5) sin(x2 + 5))

oo =10 (SR

shown on the grid of 90601 points, and (b) 961 noisy training data points y =

f(x1,72) + €, where € is Gaussian noise of zero mean and variance 0.16

A

(b)
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Symmetric Modelling Results

d Every training data used as a RBF centre with M = K = 961, RBF

variance 0 = 8.0 was determined separately using cross validation

A Local regularisation assisted OLS algorithm with LOO MSE was used to
automatically select sparse RBF / SRBF model

. MSE = E[(y —1)?] was calculated over noisy train-

ing set and a separate noisy test set

O Mean modelling error was defined as MME = E[(f(x1,x2) —9)?] over
grid of 90601 points noise-free f(x1,xzs)

model size training MSE test MSE  MME
RBF 105 0.1543 0.2047 0.0294
SRBF 68 0.1566 0.1839 0.0093

SSP 2009 1; School of ECS, University of Southampton, UK 8


http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/

model error

Symmetric Modelling (continue)

(a) modelling error f(z1,22) — f(z1,22) of standard RBF model, and (b)

modelling error f(z1,z2) — f(21,22) of symmetric RBF model
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Results Analysis

1 By incorporating , SRBF model offers significantly

better generalisation performance

iz Mean modelling error is three times smaller than standard RBF

(A OLS algorithm selecting M " model terms from K-term candidate set has
complexity
C=(M +1) x K x O(K)

= For SRBF, M = 68, while for standard RBF, M = 105 in this case

1 Thus, complexity of SRBF is about half of
complexity for constructing standard RBF model

1 Computational requirements of a symmetric node is twice standard one

1 Prediction complexity of two models are similar
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Boundary Value Constraints

1 Underlying system satisfies a set of boundary value constraints
f(xj)=d;j; 1<j<L

O xj and d;, 1 <j < L, are known
O These BVCs may represent the fact that at some critical regions, there

is a about system

1 Any identified model f is required to strictly meet these BVCs

A

fxj)=d;, 1<j<L

O RBF model with standard node p;(k) = ¢ (||x(k) — ¢;||/o) cannot
meet these BVCs

1 Using these BVCs as constraints dramatically complicates learning

O Efficient state-of-the-art learning methods cannot be applied directly
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Boundary Value Constraint RBF Network

1 Boundary value constraint-RBF model takes the form

M
(k) = f(x(k)) = pi(x(k))0; + g(x(k))
i=1
. with novel RBF node structure

pi(x) = h(x)p(|lx — cil| /o)

d Geometric mean of data sample x to BVCs x;,1 <j <L

9= { Tl

[ Since h(x;) = 0 at any boundary point x;, node p;(x) has property of

zero forcing at any x;
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BVC-RBF (continue)
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[ Offset function g(x) passes all predetermined boundary values f(x;) =
g(x;) =d;j, 1 <j < L, and it is completely determined by BVCs but does not

contain any adjustable parameters dependent on Dy .
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BVC-RBF Illustration

[ One-dimensional function f(z) with two BVCs: f(0.1) = —2, f(0.5) =3

1 Five RBFs with zero forcing at two boundary points (a), and offset pass-

ing function g(x) (b)

1
ol —

S
| p,(x)
ore == p,()
0.6} Ps(X)
05T // ‘\“.
0.4t // : \'\_
o3/
0.2t ~ [N '

- 7 N\ l/ \\ \\
. SPTS S | O | ‘
-1 -0.5 0 0.5 1 1.5 2 -1 -0.5 0

(a) (b)
SSP 2009 1; School of ECS, University of Southampton, UK 14


http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/

BVC-Function Modelling

(a) Underlying function f(x1,x2) shown on grid of 961 points
(b) L = 120 BVCs given by coordinates marked as cross points

(c) 961 noisy training points, with Gaussian noise of zero mean and variance 0.01°
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d OLS algorithm based on training MSE and D-optimality was used to automat-
ically identify standard RBF and BVC-RBF models

[ RBF variance 0® = 0.01 was determined by cross validation and 7 = 0.04
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BVC-Function Modelling Results

model size  training MSE (inside Dg) MME (inside boundary) @ MME (on boundary)

RBF 91 1.6894 x 10~ 1.0229 x 10~* 2.1249 x 10~
BVC-RBF 68 1.0736 x 107* 4.3787 x 107° 7.2598 x 10~

(a) Modelling error f(x1,x2) — ¢ of standard RBF (a) and BVC-RBF (b)
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Summary

(d Discuss of using prior knowledge to form grey-box RBF model

A Two types of prior information have been considered

O Underlying process exhibits known symmetry property

O Underlying process obeys a set of boundary value constraints

1 Novel SRBF model and BVC-RBF model have been proposed

O Existing efficient state-of-the-arts RBF learning methods

without any modification

O Result in better generalisation performance, smaller model size

and reduced complexity in model construction

SSP 2009 1; School of ECS, University of Southampton, UK 17


http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/

