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Motivations

o Standard radial basis function network is a black-box model

m adopting black-box modelling approach is appropriate if no a priori
information exists regarding underlying data generating mechanism

o If there are known prior knowledge concerning underlying process, they
should be incorporated into model structure explicitly

o How to incorporate prior knowledge to form grey-box model is highly
problem dependent, and is really an art

o Two types of prior information are considered

m Underlying process exhibits known symmetry property

m Underlying process obeys a set of boundary value constraints

o Existing learning algorithms can be applied to resulting grey-box models

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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RBF Data Modelling

o Give training data {x(k), y(k)}K
k=1 generated from nonlinear system

y(k) = f(x(k)) + ε(k)

f(•) is unknown, and ε(k) represents observation noise

o Radial basis function model

ŷ(k) = f̂(x(k)) =
M∑
i=1

θipi(k)

with RBF basis pi(k) = ϕ (‖x(k)− ci‖/σ) specified by RBF centre ci

and RBF variance σ2

o Black-box, as every thing is learnt from data, which is inherently
stochastic

o Efficient orthogonal least squares learning has been developed

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Early Orthogonal Least Squares

o Orthogonal least squares methods and their application to

non-linear system identification - S. Chen, S. A. Billings and

W. Luo - International Journal of Control, 1989

Google scholar citations: 467 ISI citations: 364 (July 2009)

o Orthogonal least squares learning algorithm for radial basis

function networks - S. Chen, C. F. N. Cowan and P. M. Grant -

IEEE Transactions on Neural Networks, 1991

Google scholar citations: 1660 ISI citations: 1160 (July 2009)

m Simple and efficient, and capable of producing parsimonious models with
good generalisation performance

m 20 year old, still popular with nonlinear data modelling practicians

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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More Recent Enhancements

o Recent enhancements to orthogonal least squares learning include

m Local regularisation assisted OLS learning

m Optimal experiment design enhanced OLS learning

m OLS learning based on leave-one-out cross validation

o These state-of-the-arts bring further benefits

m Enhance generalisation and sparseness

m Improve model robustness and reduce parameter estimate variances

m Select model terms by directly maximising generalisation capability

m as well as fully automatic model selection

+ In developing grey-box RBF models, these OLS statistical learning al-
gorithms should readily be applicable

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Symmetric RBF Network

o Unknown system f(•) possesses odd symmetry f(−x) = −f(x)

+ e.g. from physics, underlying optimal discriminant function for BPSK
digital signals has old symmetry

o Radial basis function model with standard node

pi(k) = ϕ (‖x(k)− ci‖/σ)

+ cannot guarantee to have odd symmetry

o Symmetric RBF model with symmetric RBF node

pi(k) = ϕ (‖x(k)− ci‖/σ)− ϕ (‖x(k) + ci‖/σ)

+ guarantee to obey same odd symmetry as underlying process

+ incorporate prior information naturally into model structure

+ all RBF learning methods applicable without any modification

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Symmetric Function Modelling

(a) Underlying function

f(x1, x2) = 10

(
sin(x1 − 5) sin(x2 − 5)

(x1 − 5)(x2 − 5)
−

sin(x1 + 5) sin(x2 + 5)

(x1 + 5)(x2 + 5)

)
shown on the grid of 90601 points, and (b) 961 noisy training data points y =

f(x1, x2) + ε, where ε is Gaussian noise of zero mean and variance 0.16
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Symmetric Modelling Results

o Every training data used as a RBF centre with M = K = 961, RBF
variance σ2 = 8.0 was determined separately using cross validation

o Local regularisation assisted OLS algorithm with LOO MSE was used to
automatically select sparse RBF / SRBF model

o Mean square error MSE = E[(y− ŷ)2] was calculated over noisy train-
ing set and a separate noisy test set

o Mean modelling error was defined as MME = E[(f(x1, x2)− ŷ)2] over
grid of 90601 points noise-free f(x1, x2)

model size training MSE test MSE MME

RBF 105 0.1543 0.2047 0.0294

SRBF 68 0.1566 0.1839 0.0093

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Symmetric Modelling (continue)

(a) modelling error f(x1, x2) − f̂(x1, x2) of standard RBF model, and (b)
modelling error f(x1, x2)− f̂(x1, x2) of symmetric RBF model
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Results Analysis

o By incorporating prior information, SRBF model offers significantly
better generalisation performance

+ Mean modelling error is three times smaller than standard RBF

o OLS algorithm selecting M
′
model terms from K-term candidate set has

complexity

C =
(
M

′
+ 1

)
×K ×O(K)

+ For SRBF, M
′
= 68, while for standard RBF, M

′
= 105 in this case

+ Thus, complexity of SRBF model construction is about half of
complexity for constructing standard RBF model

o Computational requirements of a symmetric node is twice standard one

+ Prediction complexity of two models are similar

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Boundary Value Constraints

o Underlying system satisfies a set of boundary value constraints

f(xj) = dj , 1 ≤ j ≤ L

m xj and dj , 1 ≤ j ≤ L, are known

m These BVCs may represent the fact that at some critical regions, there
is a complete knowledge about system

o Any identified model f̂ is required to strictly meet these BVCs

f̂(xj) = dj , 1 ≤ j ≤ L

m RBF model with standard node pi(k) = ϕ (‖x(k)− ci‖/σ) cannot
meet these BVCs

o Using these BVCs as constraints dramatically complicates learning

m Efficient state-of-the-art learning methods cannot be applied directly

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Boundary Value Constraint RBF Network

o Boundary value constraint-RBF model takes the form

ŷ(k) = f̂(x(k)) =
M∑
i=1

pi(x(k))θi + g(x(k))

o with novel RBF node structure

pi(x) = h(x)ϕ(‖x− ci‖/σ)

o Geometric mean of data sample x to BVCs xj , 1 ≤ j ≤ L

h(x) = L

√√√√ L∏
j=1

‖x− xj‖

o Since h(xj) = 0 at any boundary point xj , node pi(x) has property of
zero forcing at any xj

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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BVC-RBF (continue)

o Offset function

g(x) =

L∑
j=1

αje
−
‖x−xj‖

2

τ

o with τ being a positive scalar, α = [α1 α2 · · ·αL]T is obtained by solving linear

equations g(xj) = dj , 1 ≤ j ≤ L, α = G−1d, where d = [d1 d2 · · · dL]T and

G =


1 e−

‖x1−x2‖
2

τ · · · e−
‖x1−xL‖2

τ

e−
‖x2−x1‖

2

τ 1
. . . e−

‖x2−xL‖2
τ

...
. . .

. . .
...

e−
‖xL−x1‖

2

τ e−
‖xL−x2‖

2

τ · · · 1


o Offset function g(x) passes all predetermined boundary values f(xj) =

g(xj) = dj , 1 ≤ j ≤ L, and it is completely determined by BVCs but does not

contain any adjustable parameters dependent on DK .

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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BVC-RBF Illustration

o One-dimensional function f(x) with two BVCs: f(0.1) = −2, f(0.5) = 3

o Five RBFs with zero forcing at two boundary points (a), and offset pass-
ing function g(x) (b)
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BVC-Function Modelling

(a) Underlying function f(x1, x2) shown on grid of 961 points

(b) L = 120 BVCs given by coordinates marked as cross points

(c) 961 noisy training points, with Gaussian noise of zero mean and variance 0.012

(a) (b) (c)

o OLS algorithm based on training MSE and D-optimality was used to automat-

ically identify standard RBF and BVC-RBF models

o RBF variance σ2 = 0.01 was determined by cross validation and τ = 0.04

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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BVC-Function Modelling Results

model size training MSE (inside DK) MME (inside boundary) MME (on boundary)

RBF 91 1.6894× 10−4 1.0229× 10−4 2.1249× 10−4

BVC-RBF 68 1.0736× 10−4 4.3787× 10−5 7.2598× 10−11

(a) Modelling error f(x1, x2)− ŷ of standard RBF (a) and BVC-RBF (b)

(a) (b)

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Summary

o Discuss art of using prior knowledge to form grey-box RBF model

o Two types of prior information have been considered

m Underlying process exhibits known symmetry property

m Underlying process obeys a set of boundary value constraints

o Novel SRBF model and BVC-RBF model have been proposed

m Existing efficient state-of-the-arts RBF learning methods readily ap-
plicable without any modification

m Result in better generalisation performance, smaller model size
and reduced complexity in model construction

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/

