
Multiple Hyperplane Detector for Implementing the Asymptotic Bayesian 
Decision Feedback Equalizer 

S. Cheni, L. Hanzof and B. Mulgrewt 
t Department of Electronics and Computer Science 

University of Southampton, Southampton SO17 lBJ, U.K. 
Department of Electronics and Electrical Engineering 
University of Edinburgh, Edinburgh EH9 3JL, U.K. 

Abstruct- A detector based on multiple-hyperplane partitioning of 
the signal space is derived for realizing the optimal Bayesian decision 
feedback equaliser (DFE). It is known that the optimal Bayesian deci- 
sion boundary separating any two neighbouring signal classes is asymp- 
totically piecewise linear and consists of several hyperplanes, when the 
signal to noise ratio (SNR) tends to infinity. The proposed technique 
determines these hyperplanes and uses them to partition the observa- 
tion space. The resulting detector can closely approximate the optimal 
Bayesian detector, at an advantage of considerably reduced decision 
complexity. 

I. INTRODUCTION 

For the class of DFEs that employ a symbol-decision 
finite-memory structure with a fixed decision delay, the opti- 
mal solution is the Bayesian detector [1]-[3]. The complex- 
ity of the optimal Bayesian DFE is determined by the factor 
of Mna,  where M being the size of the symbol constellation 
and n, the channel impulse response (CIR) length. As the 
complexity of this optimal detector increases exponentially 
with the size of symbol set M ,  the conventional or linear- 
combiner DFE [4]-[6] is often used in practice to provide a 
trade-off between performance and detector complexity. 

For the 2-PAM case, the performance difference between 
the conventional and optimal Bayesian DFEs has a geomet- 
ric explanation: a linear-combiner DFE can only partition 
the observation space with a hyperplane while the Bayesian 
detector can do so with a hypersurface [ 2 ] .  Asymptotically, 
as the SNR tends to infinity, the Bayesian hypersurface be- 
comes piecewise linear and is made up of a set of hyper- 
planes [7]. In practice, at large rather than infinite SNR, the 
Bayesian decision hypersurface can closely be approximated 
by a multiple-hyperplane form. This motivated our previous 
research on multiple-hyperplane detector [SI. 

Signal space partitioning techniques for binary channels 
have been developed from different motivations. Kim and 
Moon [9],[ 101 developed a novel partitioning design. Their 
technique determines a set of hyperplanes which separate 
clusters of noiseless channel states. The convex regions asso- 
ciated with individual states are constructed by intersecting 
hyperplanes. The overall decision region is then formed from 
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these convex regions. The decision complexity and perfor- 
mance of the detector is controlled during design by a spec- 
ified minimum separating distance. The main drawback of 
their design is that it involves extensive computational effort 
during the design process. In our previous work [8], we have 
proposed a much simpler alternative design to explicitly re- 
alize the asymptotic Bayesian decision boundary. 

This paper extends this multiple-hyperplane detector de- 
sign to M-PAM channels. Based on a geometric transla- 
tion property for the M sets of noiseless channel states, the 
asymptotic Bayesian boundary for separating any two neigh- 
bouring signal classes can be deduced, and this allows us 
to extend the binary case design [8] to the general M-PAM 
case. Similar to the binary case, the design of our multiple- 
hyperplane detector for M-PAM channels is straightforward, 
and guarantees to realize the asymptotic Bayesian DFE de- 
tector. Furthermore, the reduction in detector complexity 
with signal space partitioning approach is more significant 
for M > 2. 

11. THE PROBLEM FORMULATION 

We will assume that the real-valued channel generates the 
received signal samples of 

n,-1 

y(k) = ais(k - i) + e ( k ) ,  (1) 
i=O 

where ai are the CIR taps, the Gaussian white noise {e(lc)} 
has zero mean and variance cz, and the M-PAM symbol s(k) 
takes the values from the set: S = {si  = 2i - M - 1, 1 5 
i 5 M}. The SNR is defined as (Cy:&' a:) n:/az, where 
0: is the symbol variance. The DFE uses the information 
present in the noisy observation vector y ( k )  = [y(k) y(k - 
1) . . . y(k - m + 1)]* and the past detected symbol vector 
&,(IC) = [.G(k-d-l) . -..G(k-d-n)]* to produce an estimate 
6( k - d)  of s( k - d) ,  where d, m and n are the decision delay, 
the feedforward and feedback orders, respectively. We will 
choose d = n, - 1, m = n, and n = n, - 1, as this 

n 

361 



choice is sufficient to guarantee a desired linear separability 
for different signal classes [ 5 ] .  

The observation vector y ( k )  can be expressed as [ 5 ] :  

Y(k) = Pi sf(k) + F2 S b ( k )  i- e ( k ) ,  (2) 

where sf(k) = [s(k)...s(k - d) lT ,  stI(k) = [s(k - d - 
1) . . . s (k  - d - n)lT, e ( k )  = [e(k)  . . . e (k  - m + 1)IT, and 

Additions 
Multiplications 

ex 

are the m x (d + 1) and m x n CIR matrices, respectively. 
Assuming correct past decisions, we have 

y ( k )  = FI s f ( k )  + FZ % ( k )  + e ( k )  . (5 ) 

Thus the decision feedback translates the. original space y ( k )  
into a new space r(k): 

Full Bayesian Multiple-hyperplane 
2n,Mna - M 
(n, + l ) M n a  

(n, + M - 2)L 
na L 

Mna - 

Let the N f  = Md+' possible sequences of s f ( k )  be s f j ,  
1 5 j 5 N f .  The set  of the noiseless  channel states in the 
translated signal space, namely, 

(7) 
A R = {rj = FI sfj, 1 5 j <_ N f }  

can be partitioned into M conditional subsets: 

R(i) {rj E R : s (k  - d)  = si}, 1 5 i 5 M .  (8) 

The optimal Bayesian DFE [3] can now be summarized. The 
M decision variables are given by 

rj ER(') 

and the minimum-error-rate decision is defined by 

i ( k  - d)  = si* with i* = arg max {pi(r(k))} 

Table I gives the complexity of this optimal detector. 

(10) 1.li.l-M 
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TABLE I 
COMPARISON OF DECISION COMPLEXITY FOR THE FULL BAYESIAN 

AND MULTIPLE-HYPERPLANE DETECTORS. 

111. MULTIPLE-HYPERPLANE DETECTOR 

We first establish a geometric translation property for any 

Lemma I :  For 1 <_ i 5 M - 1, the subset R(i+l) is a 

two neighbouring subsets of channel states. 

translation of by the amount 2arev 

~ ( i + l )  = ~ ( i )  + 2ar,, , (1 1) 

where are" = [an,-1 al aoIT. Furthermore, R(2) and 
R(i+l) are linearly separable. 

Proof: From the definitions of R(i) and F1, for any rl E 
It(Z), there exists a rj E such that rj = rl + (si+l - 
si)arev = rl + 2arev, which implies (1 1). To prove the linear 
separability, consider the hyperplane 

with w = [o 0 .  . . O  & . For any rl E R(i) and any rj E 

R(i+l), we have H(rl + ci) = -1 < 0 and H(rj + ci) = 
1 > 0. Fig. 1 illustrates this lemma graphically. 

1 T. 

A. Asynzptotic optimal boundary for two neighbouring 
classes 

Although it is always possible to construct a hyperplane 
to correctly separate R(i) from R(z+l), the optimal decision 
boundary Di that separates R(j) from R(i+l) cannot gener- 
ally be approximated by a single hyperplane. Without the 
loss of generality, consider i = T, the optimal decision 
boundary 23% for separating R(*) and I?(*+'). Because 
of lemma 1, when SNR+ 00 (or 0: + 0), the influence 

% <  asymptotic Bayesian boundary 
, /  

'\separating A 
' <  hyperplane W 

Fig. 1 .  Illustration of shift property. 
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from all the other R(i) for i # + 1 vanishes 
much more quickly, and it effectively becomes a two-class 
problem. We have the following definition [8]. 

Dejinition I :  A pair of opposite-class channel states 
(r(+) E R(?+'),r(-) E is said to be dominant if 

and i # 

'drj E R(%)  U R(?+'), r j  # r(+) and rj # r(-): 

llrj - roll2 > llr(+) - roll2 , (13) 

where U denotes the union operator and 

r(+) + r(-) 
(14) 

The following properties of V+ are useful in the derivation 
of a multiple-hyperplane detector (see [7]). A necessary con- 
dition for a point rB  E D+ is 

2 -  
ro = 

r(+) + r(-) + ["+) '(-11 
7 (15) 2 

rB = 

where XI denotes an arbitrary vector in the subspace orthog- 
onal to x, r(+) and r(-) are a pair of dominant states; and the 
sufficient conditions for r B  E Vy are 

IlrB - .(+)I12 < llrB - rlIl2, vrl E R(%+'), rl # r(+), 

llrB - & ) / I 2  < llrB - rj1I2, vrj E R ( T ) ,  rj # d-1, 

1l.B - d+)\12 = IIrB - r(-)112. 

(16) 

(17) 
(18) 

The following lemma describing D? in the asymptotic case 
of ~2 + 0 is a direct consequence of the necessary and suf- 
ficient conditions (1 5)-( 18). 

Lenznza 2: Asymptotically, the optimal decision boundary 
27+ separating R(?) and R(?+') is piecewise linear and 
made up of a set of L hyperplanes. Each of these hyperplanes 
is defined by a pair of dominant states, the hyperplane is or- 
thogonal to the line connecting the pair of dominant states 
and passes through the midpoint of the line. 

M 

B. Multiple-hyperplane detector for two neighbouring 
classes 

According to lemma 2, a multiple-hyperplane detector can 
be constructed to partition the signal space into the two re- 
gions of O(k - d)  < -1 and i?(/~ - d) > 1, respectively. The 
detector will consist of L linear discriminant functions and 
a many-to-one Boolean mapper, similar to the binary case 
given in [8]. For completeness, the design procedure for this 
multiple-hyperplane detector is produced here with the nec- 
essary modifications: 

Step I Select all the L pairs of dominant channel states from 
the two subsets R(%)  and E(?+'). For each pair, compute 
a hyperplane that separates these two opposite-class states. 
Step 2 A Boolean logic function is obtained to make a de- 
cision based on the location of the observation vector r(k) 
relative to each hyperplane. This is achieved by first defining 
a convex region associated with each state in a given class, 
e.g. the class R(y+'), and then forming a union of these 
regions. 

From (15)-( 1 8), it is seen that pairs of dominant states which 
define the asymptotic boundary can be selected using: 

that is a part of the asymptotic optimal decision boundary. 
The weight vector w1 and bias bl of the hyperplane can be 
computed straightforwardly as: 

The hyperplane defined by (20) and (21) is a canonical hy- 
perplane with (ri+),rj-)) as its two support vectors [6], and 
has the property that Hl(r i+) )  = 1 and Hl(rl-)) = -1. 
The following definition is useful in the optimal multiple- 
hyperplane partitioning: 

Dejinition 2: A state rj E R ( y )  U is said to be 
suficiently separable by Hl if Hl can separate rj correctly 
with a "canonical distance" IwFrj + blI 2 1. 

Notice that rj E R(Y+') is sufficiently separable by Hl 
iff wTrj + bl > 1. Similarly, rj E R(+) is sufficiently 
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separable by Hl iff wFrj + bl 5 -1. Number the states in 
R ( y )  as r[-) to r z )  and those in R(y as r r )  to r z ) ,  

where N,  = N f / M .  All the states in R(F) U R(%+l) are 
tested to see if they can be separated sufficiently by Hl, and 
this generates the following “separability” matrix: 

where hl,j E {0,1}. The rule in generating this matrix is: if 
a state can sufJiciently be separated by H I ,  the corresponding 
binary index hl,j = 1; otherwise hl,j = 0. 

Define the half-space Xi+) f {r : Hl(r) 2 0). To 
construct a convex region E!+) covering a state r$+) E 
R(%+l), select those hyperplanes which can sufficiently 

separate r$+) and denote G;’) f { E  : hl,q+Ns = 1). 
Then Rp) is obtained by the intersection of all the XI+) 
with j E Gp) 

R p  = n ay) .  (22 )  
j€Gk+.+’ 

In fact, a subset of the hyperplanes defined by Gi+) is enough 
to construct R!”, provided that every state in R(+) can 
sufficiently be separated by at least one hyperplane in the 
subset. The overall decision region R(+) associated with the 
decision S(k - d)  2 1 is simply 

N .  

R(+) = U R p .  (23) 
q=l  

The Boolean logic function for the multiple-hyperplane de- 
tector is now completed. Define the threshold detector output 
pj(r(k)) for a linear discriminant function Hj(r(k)): 

A Boolean logic value 6,(r(k)) indicating whether r(k) E 

Rj;f) or not is obtained via a logic AND operation of 
{pj(r(k)) : j E G;+)}: 

operation of {6’,(r(k))} for all q: 

C. Multiple-hyperplane detector for M classes 

According to lemma 1, if Hl(r) is a hyperplane that forms 
a part of the asymptotic decision boundary for separating 

and Id%+’), Hl(r + ci) is a hyperplane that is a part 
of the asymptotic boundary for separating R(i) and R(i+l), 
where ci := ( M  - 2i)arev. In fact, the asymptotic decision 
boundary for separating and R(i+2) is the translation 
of the asymptotic decision boundary for separating R(i) and 

by an amount 2arev. Note that 

A 
Hl(r(k) + ci) = wFr(k) + bl,i = Rl(k) + &,i, (27) 

where bl,i = wTci + bl. To indicate which asymptotic de- 
cision boundary, the index i, l < i < M - l, is used. 
The half-space defined by the hyperplane wTr + 61,i = 0 
is Xi+’i) f {r : wTr + bl,i 3 0}, the convex region 
covering r$+’Z) E R(i+l) is RFli), and the decision region 
for S(k - d)  2 si+l is R(+>i). The corresponding Boolean 
logic value for the linear discriminant function Hl(k) + bl,i 

is denoted by & ( k )  = Pl(r(k) + ci), the Boolean logic 
value indicating whether r(k) E R$+’i) or not is denoted 
by 6 , , i (k )  = 6,(r(k) + ci), and the Boolean logic value 
indicating whether r(k) E R(+9i) or not is denoted by 
ai(k) = a(r(k) + ci). The resulting multiple-hyperplane 
detector c m  now be summarized. At k :  

F O R l = l t o L  

NEXT 1 
COMPUTE &(k) = wFr(k); 

FOR2 = 1 to M - 1 
FOR E = 1 toL 

NEXT 1 
COMPUTE Boolean logic value ai(k); 
IF(NOTai (k) ) {  

COMPUTE f?i(k) + 61.i; 

d(k - d )  = si; 

5(k - d )  = SM; 

BREAK; 
} ELSE IF ( (Z == A4 - 1 ) { 

BREAK; 
1 

NEXT i 

As all the values of &,i are pre-computed at the design stage, 
the detector complexity is what is required to compute the L 
linear discriminant functions, as listed at Table I. Thus the 
complexity of this multiple-hyperplane detector is L times 
of the linear-combiner DFE. As long as L < Una, this 
multiple-hyperplane detector requires less computation than 

oq(r(k)) 2 n Pj(r(k)). (25)  
j€Gb+’ 

A Boolean logic value cr(r(k)) indicating whether r(k) E 
R(+) (that is, S(k - d)  2 1) or not is obtained via a logic OR 
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the optimal Bayesian detector. The L pairs of dominant states 
are selected from two subsets, which have 2MnU-’ states. 
Empirically, we have found usually L < 2MnnW1. 

~~~~~~ R(2)  
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 l 1 l l l l l l l i l l  

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 l l l 1 l l l l l l l l  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 l l l l 1 1 1 1  

Iv. A SIMULATION EXAMPLE 

R(3) 
~~ 

0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 0 0 l 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 l l l l l l 0 0 l 0 0 0  

An example was used to test the multiple-hyperplane de- 
tector, in which 4-PAM symbols were transmitted over a 
3-tap channel specified by the CIR a = [0.4 1.0 0.6IT. 
The structure parameters of the D E  were accordingly set 
to m = 3, d = 2 and n = 2. The channel state set R 
had N f  = 64 states. Five pairs of dominant states were 
found from the subsets R(2)  and R(3) ,  giving rise to 5 sep- 
arating hyperplanes. The separating matrix is listed in Ta- 
ble 11, from which a required Boolean logic function was 
obtained. For instance, the states r(,+’2) to r(+’2) 6 in R(3) 
are separated from the opposite-class states R(2)  by the two 
hyperplanes H I  and H2; r?l2) and rra2)  require H3 and 
H4 for separation from R(2) ;  and rp’2) to r[;l2) are sepa- 
rated from R(2) by H5. The symbol error rate (SER) per- 
formance of this multiple-hyperplane detector is compared 
with those of the Bayesian and conventional minimum mean 
square error (MMSE) DFEs in Fig. 2 under different SNR 
conditions, where it can be seen that there is hardly any SER 
performance difference between the multiple-hyperplane and 
full Bayesian detectors. For this example, the full Bayesian 
detector requires 380 additions, 256 multiplications and 64 
e” function evaluations to detect a symbol. The multiple- 
hyperplane detector, however, needs only 25 additions and 
15 multiplications to make a decision, which is less than 6% 
of the complexity required by the full Bayesian DFE. 

V. CONCLUSIONS 

We have extended a signal space partitioning technique, 
originally developed for binary channels, to M-PAM chan- 
nels. A scheme is presented to construct a multiple- 
hyperplane partitioning that is asymptotically optimal. The 
resulting detector consists of a set of linear discrimi- 
nant functions and associated Boolean logic values, and 
it has much lower decision complexity compared with the 
Bayesian detector. Although this multiple-hyperplane detec- 

a i ’  
- 0 - 6 l  I 

16 18 20 22 24 26 28 30 
Signal to Noise Ratio (dB) 

Fig. 2. Performance comparison of the classical MMSE DFE (MMSE), the 
multiple-hyperplane detector (AB) and the full Bayesian DFE (FB) with 
detected symbols being fed back. 

tor achieves the optimal Bayesian performance only at the 
asymptotic case of infinite SNR, in practice, it can close ap- 
proximate the optimal performance under finite SNR condi- 
tions. 
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