Concurrent Constant Modulus Algorithm and Soft Decision Directed Scheme for Fractionally-Spaced Blind Equalization

S. Chen[†] and E.S. Chng[‡]

[†] School of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, U.K. E-mail: sqc@ecs.soton.ac.uk

[‡] School of Computer Engineering Nanyang Technological University, Singapore 639798

Presented at IEEE International Conference on Communications Paris, France, June 20-24, 2004

The support of the U.K. Royal Society under a conference grant scheme and the support of the U.K. Royal Academy of Engineering under an international travel grant scheme are gratefully acknowledged.

Constant modulus algorithm aided soft decision directed scheme for low complexity blind equalization of high-order QAM channels

 \bigcirc Existing works:

Constant modulus algorithm, concurrent CMA and decision directed scheme (De Castro et al, ICC2001)

○ Concurrent CMA and soft decision directed scheme:

Simpler operational requirements, faster convergence and similar steady-state equalization performance, compared with CMA+DD scheme

 \bigcirc Comparative simulation results

Constant Modulus Algorithm

CMA is a popular choice for blind equalization of high-order QAM channels

 \Uparrow Very simple, need to know little e.g. robust to carrier recovery error, capable of opening initially closed eye

 \Downarrow Steady-state performance may not be sufficiently accurate to achieve adequate BER

○ A solution is to switch to (hard) decision directed adaptation after convergence

 \bigcirc When to switch ? and can it be switched to ?

De Castro *et al* (2001) split equalizer into a CMA sub-equalizer and a DD sub-equalizer: $\mathbf{w} = \mathbf{w}_c + \mathbf{w}_d$

1. CMA adaptation: with $y(k) = \mathbf{w}_c^T(k)\mathbf{r}(k) + \mathbf{w}_d^T(k)\mathbf{r}(k)$

$$\left. \begin{array}{l} \epsilon(k) = y(k)(\Delta_2 - |y(k)|^2) \\ \mathbf{w}_c(k+1) = \mathbf{w}_c(k) + \mu_c \epsilon(k) \mathbf{r}^*(k) \end{array} \right\}$$

2. DD adaptation: with $\tilde{y}(k) = \mathbf{w}_c^T(k+1)\mathbf{r}(k) + \mathbf{w}_d^T(k)\mathbf{r}(k)$

$$\mathbf{w}_d(k+1) = \mathbf{w}_d(k) + \mu_d \delta(\mathcal{Q}[\tilde{y}(k)] - \mathcal{Q}[y(k)])(\mathcal{Q}[y(k)] - y(k))\mathbf{r}^*(k)$$

where $\mathcal{Q}[\bullet]$ denotes quantization operation or hard decision, $\delta(x) = 1$ if x = 0 + j0 and $\delta(x) = 0$ if $x \neq 0 + j0$

 \bigcirc \mathbf{w}_d is updated only if hard decisions before and after CMA adaptation are the same, to reduce error propagation due to incorrect decisions

Motivation for Soft DD

After equalization is accomplished, the *a posteriori* PDF of y(k) is approximately:

$$p(\mathbf{w}, y(k)) \approx \sum_{q=1}^{Q} \sum_{l=1}^{Q} \frac{p_{ql}}{2\pi\rho} \exp\left(-\frac{|y(k) - s_{ql}|^2}{2\rho}\right)$$

where s_{ql} are constellation points of Q^2 -QAM, p_{ql} are the *a priori* probabilities of s_{ql} , and ρ is variance of y(k)

 \bigcirc Divide complex plane into $Q^2/4$ regular regions, each region $S_{i,l}$ contains four symbol points

If y(k) is within $S_{i,l}$, a local approximation to the *a posteriori* PDF of y(k) is

Motivation (continue)

 \bigcirc SDD equalizer is designed to maximize log of the local *a posteriori* PDF

 $\bar{J}_{\text{LMAP}}(\mathbf{w}) = \mathsf{E}[J_{\text{LMAP}}(\mathbf{w}, y(k))]$

by adjusting \mathbf{w}_d using a stochastic gradient algorithm, where

$$J_{\text{LMAP}}(\mathbf{w}, y(k)) = \rho \log \left(\hat{p}(\mathbf{w}, y(k)) \right)$$

 \bigcirc Stochastic gradient of $J_{ ext{LMAP}}(\mathbf{w},y(k))$ is

$$\frac{\partial J_{\text{LMAP}}(\mathbf{w}, y(k))}{\partial \mathbf{w}_d} = \frac{\sum_{p=2i-1}^{2i} \sum_{q=2l-1}^{2l} \exp\left(-\frac{|y(k)-s_{pq}|^2}{2\rho}\right) (s_{pq} - y(k))}{\sum_{p=2i-1}^{2i} \sum_{q=2l-1}^{2l} \exp\left(-\frac{|y(k)-s_{pq}|^2}{2\rho}\right)} \mathbf{r}^*(k)$$

 $\bigcirc
ho$ is typically less than half the distance between neighbouring symbol points

 \bigcirc Rather than committed to a single hard decision $\mathcal{Q}[y(k)]$, tentative decisions are considered in a local region $S_{i,l}$ that includes $\mathcal{Q}[y(k)]$

CMA and SDD

○ Operations of CMA and SDD sub-equalizers are truly concurrent:

• With
$$y(k) = \mathbf{w}_c^T(k)\mathbf{r}(k) + \mathbf{w}_d^T(k)\mathbf{r}(k)$$

CMA:
$$\begin{cases} \epsilon(k) = y(k)(\Delta_2 - |y(k)|^2) \\ \mathbf{w}_c(k+1) = \mathbf{w}_c(k) + \mu_c \epsilon(k) \mathbf{r}^*(k) \end{cases}$$

SDD:
$$\mathbf{w}_d(k+1) = \mathbf{w}_d(k) + \mu_d \frac{\partial J_{\text{LMAP}}(\mathbf{w}(k), y(k))}{\partial \mathbf{w}_d}$$

 \bigcirc Computational complexity is less than CMA+DD:

equalizer	multiplications	additions	$\exp(ullet)$
CMA	$8 \times m_L + 6$	$8 imes m_L$	—
CMA+DD	$16 \times m_L + 8$	$20 imes m_L$	—
CMA+SDD	$12 \times m_L + 29$	$14 \times m_L + 21$	4

where m_L is equalizer length

Simulation (Fixed SISO Channel)

 $\bigcirc T_s/2$ -spaced 22-tap channel and 26 tap equalizer, where T_s is symbol period, 256-QAM \bigcirc Let $\{f_i\}_{i=0}^{N_f-1}$ be combined impulse response of channel and equalizer. Maximum distortion is defined by

$$MD = \frac{\sum_{i=0}^{N_f - 1} |f_i| - |f_{i_{\max}}|}{|f_{i_{\max}}|}$$

Signal Constellation (Fixed SISO Channel)

Equalizer output signal constellations after convergence (a) CMA, (b) CMA+DD, and (c) CMA+SDD

64-QAM Fading SISO Channel (CMA)

CMA equalizer output signal constellations: (a) after adaptation of 20000 symbols, (b) after adaptation of 25000 symbols, and (c) after adaptation of 30000 symbols. 6000 T_s -spaced samples were used in showing signal constellation with continuous adaptation

64-QAM Fading SISO Channel (CMA+DD)

CMA+DD equalizer output signal constellations: (a) after adaptation of 15000 symbols, (b) after adaptation of 20000 symbols, and (c) after adaptation of 25000 symbols. 6000 T_s -spaced samples were used in showing signal constellation with continuous adaptation

64-QAM Fading SISO Channel (CMA+SDD)

CMA+SDD equalizer output signal constellations: (a) after adaptation of 15000 symbols, (b) after adaptation of 20000 symbols, and (c) after adaptation of 25000 symbols. 6000 T_s -spaced samples were used in showing signal constellation with continuous adaptation

256-QAM Fixed SIMO Channel

 \bigcirc Single transmit antenna and four receive antennas

 $\bigcirc T_s/2$ -spaced channels and $T_s/2$ -spaced space-time equalizer

Space-time equalizer output signal constellations after convergence: (a) CMA, (b) CMA+DD, and (c) CMA+SDD for fixed SIMO channel with 256-QAM and SNR of 40 dB

Conclusions

- A constant modulus algorithm aided soft decision directed scheme has been derived for low complexity blind equalization of high-order QAM channels
- Compared with an existing CMA and decision directed scheme, the proposed blind equalization scheme has simpler operational requirements and faster convergence, and achieves similar steady-state equalization performance
- Original derivation is for SISO systems, but the scheme can be extended to blind space-time equalization of SIMO and MIMO systems

