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ABSTRACT

A novel adaptive beamforming technique is proposed for wireless
communication with quadrature phase shift keying signalling based
on the minimum bit error rate (MBER) criterion. It is shown that the
MBER approach provides significant performance gain in terms of
smaller bit error rate over the standard minimum mean square error
approach. Using the classical Parzen window estimate of proba-
bility density function, both the block-data and sample-by-sample
adaptive implementations of the MBER solution are developed.

I. INTRODUCTION

Spatial processing with adaptive antenna array has shown real
promise for substantial capacity enhancement in wireless commu-
nication [1]–[5]. Adaptive beamforming can separate signals trans-
mitted on the same carrier frequency, provided that they are sepa-
rated in the spatial domain. The beamforming processing, which
combines the signals received by the different elements of an an-
tenna array to form a single output, is classically done by minimiz-
ing the mean square error (MSE) between the desired and actual
array outputs or other related criteria such as the signal to interfer-
ence plus noise ratio (SINR). Adaptive implementation of the min-
imum MSE (MMSE) beamforming solution can readily be realized
using temporal reference techniques [6]–[10]. Specifically, block-
data based beamformer weight adaptation can be achieved using the
sample matrix inversion algorithm, while sample-by-sample adap-
tation can be carried out using the least mean square algorithm.

For a communication system, it is the bit error rate (BER) that
really matters. Ideally, the system design should be based directly
on minimizing the BER, rather than the MSE or SINR. A recent
work [11] has suggested an adaptive minimum BER (MBER) beam-
forming assisted receiver for binary phase shift keying communica-
tion systems. This paper first presents a novel beamforming tech-
nique based directly on minimizing the system’s BER for wireless
systems with quadrature phase shift keying (QPSK) modulation.
Adaptive implementation of the MBER beamforming solution is
then studied. Adopting a Parzen window or kernel density esti-
mation [12]–[14] to approximate the p.d.f. of the beamformer out-
put, a block-data adaptive MBER algorithm is derived. This is then
further simplified to develop a stochastic gradient adaptive MBER
algorithm which we refer to as the least bit error rate (LBER).

II. SYSTEM MODEL

The system consists of M users (sources), and each user trans-
mits a QPSK signal on the same carrier frequency ω = 2πf . The
baseband complex-valued signal of user i is:

mi(k) = Aibi(k), 1 ≤ i ≤ M, (1)

where bi(k) ∈ {±1±j} are QPSK symbols and 2|Ai|2 denotes the
signal power of user i. The source 1 is assumed to be the desired
user and the rest of the sources are the interfering users. The linear
antenna array considered consists of L uniformly spaced elements,
and the signals received by the antenna array are given by:

xl(k) =

M∑
i=1

mi(k) exp (jωtl(θi))+nl(k) = x̄l(k)+nl(k), (2)

for 1 ≤ l ≤ L, where tl(θi) is the relative time delay at el-
ement l for source i, θi is the direction of arrival for source i,
and nl(k) is a complex white Gaussian noise with zero mean and
variance E[|nl(k)|2] = 2σ2

n. The desired signal to noise ratio
is SNR= A2

1/σ2
n and the desired signal to interferer i ratio is

SIRi = A2
1/A

2
i , for 2 ≤ i ≤ M . In vector form, the array in-

put x(k) = [x1(k) · · ·xL(k)]T can be expressed as

x(k) = x̄(k) + n(k) = Pb(k) + n(k) (3)

where the noise vector n(k) satisfies E[n(k)nH(k)] = 2σ2
nIL, the

system matrix P = [A1s1 · · ·AMsM ] with the steering vector for
source i si = [exp(jωt1(θi)) · · · exp(jωtL(θi))]

T , and the trans-
mitted QPSK symbol vector is b(k) = [b1(k) · · · bM (k)]T .

A linear beamformer is employed, whose output is given by:

y(k) = wHx(k) = ȳ(k) + e(k) (4)

where w = [w1 · · ·wL]T is the complex beamformer weight
vector, and e(k) = wHn(k) is Gaussian with zero mean and
E[|e(k)|2] = 2σ2

nwHw. Define the combined impulse response
of the beamformer and the system as wHP = [c1 · · · cM ]. The
beamformer’s output can alternatively be expressed as

y(k) = c1b1(k) +

M∑
k=2

cibi(k) + e(k) (5)

where the first term is the desired signal and the second term the
residual interference. Provided that c1 is real and positive, the opti-
mal decision regarding the transmitted symbol b1(k) is:

b̂1(k) = sgn(yR(k)) + jsgn(yI(k)) (6)

where yR(k) = �[y(k)] and yI(k) = �[y(k)] are the real and
imaginary parts of y(k), respectively, and sgn(·) the sign function.

The first column of P is p1 = A1s1. In general, c1 = wHp1 is
complex-valued. The following rotating operation

wnew =
cold
1∣∣cold
1

∣∣wold (7)

can be used to make c1 real and positive. This rotation is a linear
transformation and does not alter the BER, but it enables the optimal
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decision rule (6) to be adopted. The implication of this rotation is
that, for QPSK modulation, the steering vector s1 of the desired
user is required at the receiver. Note that this is different from the
BPSK case, where the receiver does not require the steering vector
of the desired user in order to make a decision [11].

III. MBER BEAMFORMING SOLUTION

Note that x̄(k) ∈ X �
= {x̄(q) = Pb(q), 1 ≤ q ≤ Nb}, where

Nb = 4M and b(q), 1 ≤ q ≤ Nb, are all the possible sequences of

b(k). Thus, ȳ(k) ∈ Y �
= {ȳ(q) = wH x̄(q), 1 ≤ q ≤ Nb}. Y can

be divided into the four subsets conditioned on the value of b1(k):

Y±,±
�
= {ȳ(q) ∈ Y : b1(k) = ±1 ± j}. (8)

It can be seen that the conditional p.d.f. of y(k) given b1(k) =
+1 + j is a Gaussian mixture given by:

p(y|+, +) =
1

Nsb

∑
ȳ(q)∈Y+,+

1

2πσ2
nwHw

exp

(
−
∣∣y − ȳ(q)

∣∣2
2σ2

nwHw

)

(9)
where Nsb = Nb/4 is the number of the points in Y+,+. Ob-
viously, the two marginal conditional p.d.f.s for yR(k) and yI(k)

are also Gaussian mixtures. Define PER(w)
�
= Prob(b̂R,1(k) �=

bR,1(k)) and PEI (w)
�
= Prob(b̂I,1(k) �= bI,1(k)), where b1(k) =

bR,1(k) + jbI,1(k) and b̂1(k) = b̂R,1(k) + jb̂I,1(k). The BER of
the beamformer (4) is:

PE(w) =
1

2
(PER(w) + PEI (w)) . (10)

It can easily be shown that

PER(w) =
1

Nsb

∑
ȳ(q)∈Y+,+

Q
(

g
(q)
R (w)

)
(11)

and

PEI (w) =
1

Nsb

∑
ȳ(q)∈Y+,+

Q
(
g
(q)
I (w)

)
, (12)

where

Q(u) =
1√
2π

∫ ∞

u

exp

(
−v2

2

)
d v , (13)

g
(q)
R (w) =

sgn(�[b
(q)
1 ])ȳ

(q)
R

σn

√
wHw

=
sgn(b

(q)
R,1)�[wH x̄(q)]

σn

√
wHw

, (14)

g
(q)
I (w) =

sgn(�[b
(q)
1 ])ȳ

(q)
I

σn

√
wHw

=
sgn(b

(q)
I,1)�[wH x̄(q)]

σn

√
wHw

(15)

and b
(q)
1 = b

(q)
R,1 + jb

(q)
I,1 is the first element of b(q). Note that the

BER is invariant to a positive scaling of w. Similarly, the BER can
be calculated alternatively based on any of the other three subsets
Y+,−, Y−,+ and Y−,−.

The MBER beamforming solution is then defined as

wMBER = arg min
w

PE(w). (16)

The gradient of PE(w) with respect to w is

∇PE(w) =
1

2
(∇PER(w) + ∇PEI (w)) , (17)

and it can be shown that

∇PER(w) =
1

2Nsb

√
2πσn

√
wHw

∑
ȳ(q)∈Y+,+

exp


−

(
ȳ
(q)
R

)2

2σ2
nwHw




×sgn
(
b
(q)
R,1

)(
ȳ
(q)
R w

wHw
− x̄(q)

)
(18)

and

∇PEI (w) =
1

2Nsb

√
2πσn

√
wHw

∑
ȳ(q)∈Y+,+

exp


−

(
ȳ
(q)
I

)2

2σ2
nwHw




×sgn
(
b
(q)
I,1

)(
ȳ
(q)
I w

wHw
+ jx̄(q)

)
. (19)

Given the gradient, the optimization problem (16) can be solved
for iteratively using the simplified conjugated gradient algorithm,
which is detailed in [15],[16].

IV. ADAPTIVE MBER BEAMFORMING

The p.d.f. of y(k) can be shown to be explicitly given by:

p(y) =
1

Nb2πσ2
nwHw

Nb∑
q=1

exp

(
−
∣∣y − ȳ(q)

∣∣2
2σ2

nwHw

)
(20)

and the BER can alternatively be calculated by

PE(w) =
1

2Nb

Nb∑
q=1

(
Q
(
g
(q)
R (w)

)
+ Q

(
g
(q)
I (w)

))
(21)

where the computation is over all the ȳ(q) ∈ Y .

A. Block-Data Gradient Adaptive MBER Algorithm

Given a block of K training samples {x(k), b1(k)}, a Parzen
window estimate of the p.d.f. (20) is given by:

p̂(y) =
1

K2πρ2
nwHw

K∑
k=1

exp

(
−|y − y(k)|2

2ρ2
nwHw

)
(22)

where the kernel width ρn is related to the noise standard deviation
σn. From this estimated p.d.f., the estimated BER is given by:

P̂E(w) =
1

2K

K∑
k=1

(
Q
(
ĝ
(k)
R (w)

)
+ Q

(
ĝ
(k)
I (w)

))
(23)

with

ĝ
(k)
R (w) =

sgn(bR,1(k))yR(k)

ρn

√
wHw

(24)
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and

ĝ
(k)
I (w) =

sgn(bI,1(k))yI(k)

ρn

√
wHw

. (25)

The gradient of P̂E(w) can readily be calculated with

∇P̂ER(w) =
1

2K
√

2πρn

√
wHw

K∑
k=1

exp

(
− y2

R(k)

2ρ2
nwHw

)

×sgn(bR,1(k))

(
yR(k)w

wHw
− x(k)

)
(26)

and

∇P̂EI (w) =
1

2K
√

2πρn

√
wHw

K∑
k=1

exp

(
− y2

I (k)

2ρ2
nwHw

)

×sgn(bI,1(k))

(
yI(k)w

wHw
+ jx(k)

)
. (27)

By substituting ∇PE(w) with ∇P̂E(w) in the conjugate gradi-
ent updating mechanism, a block-data adaptive MBER algorithm
is readily obtained. The step size µ for the simplified conjugate
gradient updating and the kernel width ρn are the two algorithm
parameters.

B. Stochastic Gradient Adaptive MBER Algorithm

An alternative Parzen window estimate to the true density (20) is:

p̃(y) =
1

K2πρ2
n

K∑
k=1

exp

(
−|y − y(k)|2

2ρ2
n

)
(28)

and a BER estimate is

P̃E(w) =
1

2K

K∑
k=1

(
Q
(
g̃
(k)
R (w)

)
+ Q

(
g̃
(k)
I (w)

))
(29)

with

g̃
(k)
R (w) =

sgn(bR,1(k))yR(k)

ρn
(30)

and

g̃
(k)
I (w) =

sgn(bI,1(k))yI(k)

ρn
. (31)

This approximation is valid provided that the width ρn is chosen
appropriately.

To derive a sample-by-sample adaptive algorithm, consider a
single-sample estimate of p(y), namely:

p̃(y, k) =
1

2πρ2
n

exp

(
−|y − y(k)|2

2ρ2
n

)
(32)

and the instantaneous BER “estimate” P̃E(w, k). Using the instan-
taneous stochastic gradient of:

∇P̃E(w, k) =
1

4
√

2πρn

(
−sgn(bR,1(k)) exp

(
−y2

R(k)

2ρ2
n

)

+jsgn(bI,1(k)) exp

(
−y2

I (k)

2ρ2
n

))
x(k) (33)

gives rise to a stochastic gradient adaptive algorithm, which we re-
ferred to as the LBER algorithm:

w(k + 1) = w(k) + µ
(
−∇P̃E(w(k), k)

)
, (34)

c1 = wH(k + 1)p1, (35)

w(k + 1) =
c1

|c1|w(k + 1), (36)

where the adaptive gain µ and the kernel width ρn are the two al-
gorithmic parameters that have to be set appropriately. A perfect
estimation of the steering vector s1 is assumed here.

V. SIMULATION STUDY

The example consisted of four sources and a three-element an-
tenna array. Fig. 1 shows the locations of the desired source and
the interfering sources graphically. The simulated channel condi-
tions were Ai = 1 + j0, 1 ≤ i ≤ 4. Fig. 2 compares the BER
performance of the MBER solution with that of the MMSE solu-
tion under three different conditions: (a) the desired user and all
the three interfering sources had equal power, (b) the desired user
and the interfering sources 2, 3 had equal power, but the interfering
source 4 had 6 dB more power than the desired user, and (c) all
the three interfering sources had 2 dB more power than the desired
user. For this example, the MBER beamformer has significantly
better performance than the MMSE beamformer. The results also
demonstrate that the MBER beamforming is robust to the near-far
effect.

Performance of the block-data gradient adaptive MBER algo-
rithm was next studied. Fig. 3 illustrates the convergence rates
of the algorithm given SNR= 17 dB, SIR2 =SIR3 = 0 dB,
SIR4 = −6 dB and the block size K = 400, and with the two
different initial weight vectors. It can be seen that this block-data
adaptive MBER algorithm converged rapidly. The effect of the
block size K on the performance of this block-data adaptive MBER
algorithm is investigated in Fig. 4, given the condition that the de-
sired user and the interfering sources 2, 3 had an equal power, while
the interfering source 4 had a 6 dB higher power than the desired
user. Fig. 5 shows the learning curves of the LBER algorithm under
the same conditions of Fig. 3, where DD denotes decision-directed
adaptation with b̂1(k) substituting b1(k). It can be seen that the

15
o

30
o

λ/2λ /2

1
desired

45
o

source 

source 3
interferersource 2

interferer

70
osource 

interferer
4

Fig. 1. Locations of the desired source and the interfering sources
with respect to the three-element linear array with λ/2 element
spacing, λ being the wavelength.
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LBER algorithm has a reasonable convergence rate. Note that the
convergence speed was slower when the initial weight vector was
set to wMMSE, compared with the other initial condition.

VI. CONCLUSIONS

An adaptive MBER beamforming technique has been proposed
for wireless systems with QPSK signalling. It has been demon-
strated that the MBER beamformer utilizes the system resource
more intelligently than the standard MMSE beamformer and, con-
sequently, achieves a better performance in terms of a smaller BER.
The results also suggest that the MBER solution is robust to the
near-far effect. Adaptive implementation of the MBER beamform-
ing solution has been developed based on the classical approach of
Parzen window estimate for the p.d.f. of the beamformer output. A
block-data conjugate gradient adaptive MBER algorithm has been
shown to converge rapidly and requires a reasonably small block
size to accurately approximate the theoretical MBER solution. A
stochastic gradient adaptive MBER algorithm called the LBER has
been shown to perform well.
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