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Overview

Adaptive beamforming assisted multiuser detection for multiple receive antennas
aided SDMA systems with QPSK modulation scheme

© Motivation for minimum bit error rate design

© System model and standard minimum mean square error solution

© Minimum bit error rate beamforming solution

© Adaptive implementation of minimum bit error rate design

© Simulation results
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Motivation

© 128-subcarriers OFDM 4-receive-antennas aided SDMA, observing user 1 BER with increasing

number of users:
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(a) MMSE (b) MBER

© Given number of antennas, capacity is fixed. But changing design from MMSE to MBER ⇒
improve performance or better realizing the capacity

3



Communication Group S Chen

System Model

© L receive antennas and M users,
point-source model with narrow band
channels Ai for 1 ≤ i ≤ M

© Received signal model:

x(k) = x̄(k) + n(k) = Pb(k) + n(k)

where n(k) = [n1(k) · · ·nL(k)]T is
system noise vector, user QPSK symbol

user M

user 1

user 2

θ1

...

l=1

l=2

l=L

λ/2

vector b(k) = [b1(k) · · · bM(k)]T , and system matrix

P = [α1A1s1 α2A2s2 · · ·αMAMsM ]

with si, 1 ≤ i ≤ M , denoting steering vectors and α2
i transmitted signal powers.

User 1 is desired user
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Beamforming

© Linear beamformer:

y(k) = wHx(k) = wH
(x̄(k) + n(k)) = ȳ(k) + e(k)

with beamformer weight vector w = [w1 w2 · · ·wL]T , and the decision for b1(k):

b̂1(k) = sgn(yR(k)) + jsgn(yI(k))

© Let wHP = wH[p1 p2 · · · pM ] = [c1 c2 · · · cM ]. Then

y(k) = c1b1(k) +
M∑
i=2

cibi(k) + e(k)

To make sure c1 being real and positive, weight vector rotation:

wnew
=

cold
1

|cold
1 |

wold

© Minimum mean square solution: wMMSE =
(
PPH + σ2

nIL

)−1
p1, σ2

n being system noise

variance and IL identity matrix
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Bit Error Rate

© Conditional PDF of y(k) given b1(k) = +1 + j:

p(y|+ 1 + j) =
1

Nsb

∑
ȳ(q)∈Y+,+

1

2πσ2
nwHw

exp

(
−
|y − ȳ(q)|2

2σ2
nwHw

)

where ȳ(q) ∈ Y+,+ are points of ȳ(k) conditioned on b1(k) = +1 + j and Nsb is number of

points in Y+,+

© BER:

PE(w) =
1

2

(
PER

(w) + PEI
(w)
)

with

PER
(w) =

1

Nsb

∑
ȳ(q)∈Y+,+

Q
(

g
(q)
R (w)

)
PEI

(w) =
1

Nsb

∑
ȳ(q)∈Y+,+

Q
(

g
(q)
I (w)

)

g
(q)
R (w) =

sgn(b
(q)
R,1)ȳ

(q)
R

σn

√
wHw

g
(q)
I (w) =

sgn(b
(q)
I,1)ȳ

(q)
I

σn

√
wHw
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Minimum Bit Error Rate

© MBER solution:
wMBER = arg min

w
PE(w)

© No closed-from solution, but it can be obtained via gradient-based optimization,
with gradient for normalized w given by

∇PE(w) =
1
2
(
∇PER

(w) +∇PEI
(w)

)

∇PER
(w) =

1

2Nsb

√
2πσn

∑
ȳ(q)∈Y+,+

exp

−
(

ȳ
(q)
R

)2

2σ2
n

 sgn
(

b
(q)
R,1

)(
ȳ

(q)
R w − x̄(q)

)

∇PEI
(w) =

1

2Nsb

√
2πσn

∑
ȳ(q)∈Y+,+

exp

−
(

ȳ
(q)
I

)2

2σ2
n

 sgn
(

b
(q)
I,1

)(
ȳ

(q)
I w + jx̄(q)

)
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Adaptive Implementation

© Given a block of training data {x(k), b1(k)}K
k=1, a Parzen window estimate for

the PDF of y(k), p(y), is given by

p̂(y) =
1

K2πρ2
n

K∑
k=1

exp

(
−|y − y(k)|2

2ρ2
n

)

where ρn is kernel width

© From the estimated PDF p̂(y), one obtains the estimated BER P̂E(w)

© Block-data based adaptive MBER solution: minimizing P̂E(w) using a gradient-
based optimization

© To derive sample-by-sample adaptation, consider one-sample PDF “estimate”:

p̂(y, k) =
1

2πρ2
n

exp

(
−|y − y(k)|2

2ρ2
n

)
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Least Bit Error Rate

© Conceptually, from one-sample estimate p̂(y, k), one has instantaneous BER
P̂E(w, k)

© Minimizing this instantaneous BER with stochastic gradient

∇P̂E(w, k) =

(
−sgn(bR,1(k)) exp

(
−y2

R(k)

2ρ2
n

)
+ jsgn(bI,1(k)) exp

(
−y2

I (k)

2ρ2
n

))
4
√

2πρn

x(k)

leads to the LBER:

w(k + 1) = w(k) + µ
(
−∇P̂E(w(k), k)

)
c1 = wH(k + 1)p1

w(k + 1) =
c1

|c1|
w(k + 1)
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Comparison with Least Mean Square

© Compared with LMS:

w(k + 1) = w(k) + µ (b1(k)− y(k))∗ x(k)

c1 = wH(k + 1)p1

w(k + 1) =
c1

|c1|
w(k + 1)

LBER has a similarly low complexity:

algorithm multiplications additions square root exp(•)
LMS 16× L + 6 14× L− 2 1 –
LBER 16× L + 10 14× L− 4 1 2
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Simulation (Fixed Channels)

3-element antenna array, 4 users,
and fixed channel conditions:
Ai = 1 + j0 for 1 ≤ i ≤ 4

Desired user signal to noise ratio:

SNR =
1
σ2

n

15
o

30
o

λ/2λ /2

1
desired

45
o

source 

source 3
interferersource 2

interferer

70
osource 

interferer
4

Desired user signal to interferer i ratio:

SIRi =
α2

1

α2
i

, i = 2, 3, 4
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Comparison of BERs

(a) desired user and all three interfering users had equal power: SIRi = 0 dB, i = 2, 3, 4

(b) desired user and interfering users 2 and 3 had equal power but interfering user 4 had 6 dB more

power than desired user: SIR2 = 0 dB, SIR3 = 0 dB, SIR4 = −6 dB

(c) all three interfering users had 2 dB more power than desired user: SIRi = −2 dB, i = 2, 3, 4
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Comparison of PDFs

Case (a) with SNR= 15 dB: conditional PDFs, marginal conditional PDFs, and
signal subsets Y+,+
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Comparison of PDFs

Case (c) with SNR= 20 dB: conditional PDFs, marginal conditional PDFs, and
signal subsets Y+,+
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Learning Curves of LBER

Case (b) with SNR= 17 dB: (i) w(0) = wMMSE, and
(ii) w(0) = [0.0 + j0.1 0.1 + j0.0 0.1 + j0.0]T

DD: decision-directed adaptation with b̂1(k) substituting b1(k)
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Simulation (Fading Channels)

Same 3-element antenna array
and 4 users, but magnitudes of
channels Ai, 1 ≤ i ≤ 4, were
Rayleigh processes, each with root
mean power

√
0.5 + j

√
0.5

Fading was continuous, yielding
different channel magnitude and
phase for each transmitted symbol

Fading is slow at normalized
Doppler frequency 10−6

Frame structure: 40 training
symbols followed by 400 data
symbols
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Conclusions

• An adaptive beamforming assisted multiuser detection scheme based on the
minimum bit error rate design has been derived for multiple receive antennas
aided SDMA systems

• The minimum bit error rate design provides better performance and improves
system capacity, compared with the standard minimum mean square error design

• Sample-by-sample adaptation has been realized using the least bit error rate
algorithm, which has a similarly low complexity as the least mean square
algorithm, for the QPSK modulation

• Our approach can be extended to space-time multiuser detection scheme for
generic SDMA systems with wideband channels
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