Simulation Example

Conclusions

Norm-Based Joint Transmit/Receive Antenna Selection (NBJTRAS) Aided and Two-Tier Channel Estimation (TTCE) Assisted STSK Systems

Peichang Zhang^a, Sheng Chen^{a,b}, Chen Dong^a, Li Li^a, and Lajos Hanzo^a

^aCommunications, Signal Processing and Control Group Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, UK E-mails: {pz3g09,sqc,cd2g09,ll5e08,lh}@ecs.soton.ac.uk

^bKing Abdulaziz University, Jeddah 21589, Saudi Arabia

2014 IEEE International Conference on Communications Sydney, Australia, June 10-14 2014

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Outline

2 NBJTRAS and TTCE

- NBJTRAS aided STSK systems
- TTCE for NBJTRAS aided STSK systems
- 3 Simulation Example
 - Simulation Settings
 - Simulation Results

4 Conclusions

Concluding Remarks

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Outline

NBJTRAS and TTCE

- NBJTRAS aided STSK systems
- TTCE for NBJTRAS aided STSK systems
- 3 Simulation Example
 - Simulation Settings
 - Simulation Results
- Conclusions
 Concluding Remarks

Background

- MIMO systems' promise wonderland of diversity and/or multiplexing gains
 - requires multiple RF chains, which may lead to a high power consumption and hardware costs
- Antenna Selection (AS):
 - Offers a low-cost technique of reducing the number of RF chains utilised at the transmitter and/or receiver, while retaining the significant advantages of MIMO systems
- Challenges:
 - Low-complexity AS is always desirable
 - Efficient channel estimation (CE) is needed

Our Contributions

- Existing joint transmit/receive AS and CE schemes
 - Full-search based AS achieves optimal performance, while imposing a high complexity
 - Sub-optimal AS leads to a certain performance loss
 - Conventional training based CE (TBCE) imposes a high overhead required for acquiring accurate CSI, while pure blilnd CE imposes a high complexity and estimation ambiguities
- Our novel NBJTRAS and TTCE
 - The new NBJTRAS relies on norm-based antenna selection optimization at a much lower complexity
 - Simple yet efficient TTCE is capable of acquiring accurate CSI, while imposing a low overhead.

Simulation Example

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Outline

2 NBJTRAS and TTCE

- NBJTRAS aided STSK systems
- TTCE for NBJTRAS aided STSK systems
- 3 Simulation Example
 - Simulation Settings
 - Simulation Results
- Conclusions
 Concluding Remarks

Simulation Example

Conclusions

Structure of NBJTRAS aided STSK

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Conclusions

Norm-Based Selection (NBS) Criterion

Let *H*_{sub} ∈ C^{L_R×L_T} be the subset candidates of the full channel matrix *H* ∈ C^{N_R×N_T}, while the corresponding selected subset *H*_{sub} based on the NBS criterion may be formulated as:

$$\boldsymbol{H}_{sub} = \arg \max_{\widehat{\boldsymbol{H}}_{sub} \in \boldsymbol{H}} \left\{ \sum_{n_t=1}^{L_T} \sum_{n_r=1}^{L_R} || \widehat{\boldsymbol{H}}_{sub}(n_r, n_t) || \right\}$$
(1)

• Solving the above optimization problem by exhaustive search requires us to evaluate the norms of the $C_{N_R}^{L_R} \times C_{N_T}^{L_T}$ candidate subset matrices, where $C_{N_R}^{L_R}$ and $C_{N_T}^{L_T}$ are the row-dimension and column-dimension combinations of H_{sub} , respectively.

NBJTRAS and TTCE

Simulation Example

Conclusions

Norm-Based Selection (NBS) Criterion

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の < @

Conclusions

NBJTRAS Algorithm Description

- Given the full channel matrix *H* ∈ C<sup>N_R×N₇, without loss of generality, assume C^{L_R}_{N_R} < C^{L₇}_{N₇}. The NBJTRAS algorithm accomplishes the optimization in two Steps:
 </sup>
- Step 1: Row Based Operations

Let $i_r \in \{1, 2, \cdots, C_{N_R}^{L_R}\}$ be the row combination index, and get the sub-matrix $\boldsymbol{H}_{i_r} \in \mathbb{C}^{L_R \times N_T}$. Compute the magnitude of each column in \boldsymbol{H}_{i_r} , which yields the norm metric vector of

$$\boldsymbol{m}_{i_r}^{\mathrm{T}} = \left[m_{i_r}^{1} \ m_{i_r}^{2} \cdots m_{i_r}^{N_T} \right].$$
⁽²⁾

- ロ ト 4 日 ト 4 日 ト 4 日 ト 4 日 ト

Applying (2) to all the $C_{N_R}^{L_R}$ possible combinations leads to the norm metric matrix $\boldsymbol{M}^{\mathrm{T}} = [\boldsymbol{m}_1, \boldsymbol{m}_2, \cdots, \boldsymbol{m}_{C_{N_R}^{L_R}}] \in \mathbb{C}^{N_T \times C_{N_R}^{L_R}}$.

Conclusions

NBJTRAS Algorithm Description

Step 2: Column Based Operations

Find the largest L_T elements in the *i*_{*r*}th row of **M** and sum them up, which is denoted as $m_{\max}^{i_r}$, as well as record the column indices of these L_T elements in the index vector, producing the max-norm metric vector of

$$\boldsymbol{m}_{\max}^{\mathrm{T}} = \left[m_{\max}^{1} \ m_{\max}^{2} \cdots m_{\max}^{\mathsf{C}_{N_{R}}^{L_{R}}} \right]. \tag{3}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Then the optimal sub-set may be found by identifying the largest element in (3).

Simulation Example

Conclusions

An Example of NBJTRAS with $L_T = L_R = 2$

Step 1: Row Based Operations

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

Conclusions

Complexity Comparison

• Complexity of the Exhaustive Search:

$$\boldsymbol{C}_{\mathrm{ES}} \approx \mathcal{O}\left(\left(\boldsymbol{L}_{R} \cdot \boldsymbol{L}_{T}\right) \cdot \left(\boldsymbol{C}_{\boldsymbol{N}_{T}}^{\boldsymbol{L}_{T}} \cdot \boldsymbol{C}_{\boldsymbol{N}_{R}}^{\boldsymbol{L}_{R}}\right)\right)$$

• Complexity of the **NBJTRAS**:

$$\begin{split} C_{\text{NBJTRAS}} &\approx \mathcal{O}\left(\left(N_{T} \cdot L_{R}\right) \cdot \frac{\mathsf{C}_{N_{R}}^{L_{R}}}{\mathsf{N}_{R}}\right) \text{ (if } \mathsf{C}_{N_{R}}^{L_{R}} \leq \mathsf{C}_{N_{T}}^{L_{T}} \text{)} \\ \text{or } C_{\text{NBJTRAS}} &\approx \mathcal{O}\left(\left(N_{R} \cdot L_{T}\right) \cdot \frac{\mathsf{C}_{N_{T}}^{L_{T}}}{\mathsf{N}_{T}}\right) \text{ (if } \mathsf{C}_{N_{R}}^{L_{R}} > \mathsf{C}_{N_{T}}^{L_{T}} \text{)} \end{split}$$

Simulation Example

Conclusions

Complexity Comparison Figure

◆ロト ◆聞 ▶ ◆ ヨ ▶ ◆ ヨ ・ クへで

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

NBJTRAS and TTCE NBJTRAS aided STSK systems

- TTCE for NBJTRAS aided STSK systems
- 3 Simulation Example
 - Simulation Settings
 - Simulation Results
- Conclusions
 Concluding Remarks

NBJTRAS and TTCE

Simulation Example

Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Structure of Two-Tier Channel Estimation for NBJTRAS

Conclusions

Two-Tier Channel Estimation for NBJTRAS

• Tier One: Training Based CE (TBCE) for AS

- We adopt the low-complexity TBCE relying on a low training overhead in Tier One to maintain a high throughput at the cost of a poor CE
- AS is relatively **insensitive** to CE errors, therefore this inaccurate CE is adequate for the NBJTRAS scheme
- The RF chains are **reused** during the estimation of the full channel matrix.
- Tier Two: Decision-Directed CE (DDCE) for data detection
 - Data detection requires accurate CE
 - Semi-blind DDCE employs detected data for further refining CE quality

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

2 NBJTRAS and TTCE

- NBJTRAS aided STSK systems
- TTCE for NBJTRAS aided STSK systems
- 3 Simulation Example
 - Simulation Settings
 - Simulation Results
- Conclusions
 Concluding Remarks

Simulation Settings

- Quasi-static Rayleigh fading MIMO: STSK($L_T = 2, L_R = 2, T_n = 2, Q = 4, 4QAM$)
- 2 AS factor is defined as $f_{AS}(N_T, N_R) = \frac{N_T + N_R}{L_T + L_R}$
- Similar Transmitted signal power normalised to unity, SNR defined as $\frac{1}{N_0}$
- Sector Frame length set to 1,000 bits, yielding $\tau = 250$ STSK symbol blocks
- Solution Mean Channel Error (MCE): $J_{\text{MCE}}\left(\widehat{\boldsymbol{H}}_{\text{sub}}\right) = \left\|\boldsymbol{H}_{\text{sub}} - \widehat{\boldsymbol{H}}_{\text{sub}}\right\|^{2} / \left\|\boldsymbol{H}_{\text{sub}}\right\|^{2}$
- All the results were averaged over 10,000 channel realisations

Simulation Example

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

2 NBJTRAS and TTCE

- NBJTRAS aided STSK systems
- TTCE for NBJTRAS aided STSK systems

3 Simulation Example

- Simulation Settings
- Simulation Results
- Conclusions
 Concluding Remarks

NBJTRAS and TTCE

Simulation Example

Conclusions

NBJTRAS Aided STSK with Perfect CSI

• BER performance of the proposed NBJTRAS aided STSK(2, 2, 2, 4, 4QAM) given three AS factors $f_{AS}(N_T, N_R)$, in comparison to the performance of the conventional STSK(2, 2, 2, 4, 4QAM) without AS

200

NBJTRAS and TTCE

Simulation Example

Conclusions

BER of TBCE for NBJTRAS Aided STSK

BER performance of the NBJTRAS aided STSK(2, 2, 2, 4, 4QAM) with f_{AS}(4, 4) = 2, assisted by the conventional TBCE scheme given the number of the STSK training blocks M_T = 2, 5, 10 and 30, in comparison to the perfect CSI case

500

NBJTRAS and TTCE

Simulation Example

Conclusions

MCE of TBCE for NBJTRAS Aided STSK

MCE performance of the NBJTRAS aided STSK(2, 2, 2, 4, 4QAM) with f_{AS}(4, 4) = 2 and employing the conventional TBCE scheme, in comparison to the performance of the TBCE aided conventional STSK(2, 2, 2, 4, 4QAM) without AS

◆□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

NBJTRAS and TTCE

Simulation Example

Conclusions

BER of TTCE for NBJTRAS Aided STSK

• BER performance of the proposed TTCE based NBJTRAS aided STSK(2, 2, 2, 4, 4QAM) with $M_T = 5$ initial training blocks, in comparison to that of the conventional TBCE assisted NBJTRAS aided STSK(2, 2, 2, 4, 4QAM) with $M_T = 5$ and 10. $f_{AS}(4, 4) = 2$ is adopted for both systems

200

Simulation Example

Conclusions

MCE Convergence Performance of TTCE

• MCE convergence performance of the proposed TTCE for the NBJTRAS aided STSK(2, 2, 2, 4, 4QAM) with $f_{AS}(4, 4) = 2$ and $M_T = 5$ for three SNR values.

Conclusions

MCE Performance of TTCE

MCE performance of the proposed TTCE for the NBJTRAS aided STSK(2, 2, 2, 4, 4QAM) with M_T = 5, in comparison to that of the conventional TBCE scheme for the NBJTRAS aided STSK(2, 2, 2, 4, 4QAM) with M_T = 5, 10 and 250. $f_{AS}(4, 4)$ = 2 is adopted for both systems

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● のへで

Outline

2 NBJTRAS and TTCE

- NBJTRAS aided STSK systems
- TTCE for NBJTRAS aided STSK systems
- 3 Simulation Example
 - Simulation Settings
 - Simulation Results

Conclusions
 Concluding Remarks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

- We have proposed a simple yet efficient NBJTRAS aided STSK system
 - Provides a low-complexity technique of reducing the number of RF chains required by MIMO systems, while retaining the MIMO advantages
 - Our NBJTRAS is capable of solving the optimal NBS criterion at a lower complexity compared to the exhaustive search
- We have proposed a novel TTCE scheme for assisting the NBJTRAS aided STSK system
 - Only requires a low training overhead in Tier One for AS
 - Estimation of the selected sub-channel-matrix is further refined in Tier Two for data detection

Simulation Example

Conclusions

Thank you.