Towards Any-Where Any-Time Greener 5G

Sheng Chen

Next Generation Wireless

School of Electronics and Computer Science

University of Southampton

Southampton SO17 1BJ

United Kingdom

E-mail: sqc@ecs.soton.ac.uk

Joint work with Dr J. Zhang, University of Southampton, Dr Y. Li, Tsinghua University

Keynote speak at 2019 International Conference on Communication Technology, Xian, China

5G Reality Check

- 1. **5G** service requirements
 - Massive rate, 1 to 10 Gbps end to end
 - Massive connections, IoTs every device connected
 - Ultra low latency for autonomous driving, intelligent transport system, etc

Ck: Our current technology capable of support 5G service requirements

2. **5G** should be anywhere anytime

Ck: We are instantaneously connected anywhere anytime, except some black holes

- Step on jumbo jet, we disappear into a non-G **black hole**
- Holiday on cruise ship, we disappear into a non-G black hole
- 3. **5G** should be greener, consuming less energy
- Ck: 5G will consume much more energy this is physics
 - Only way to make it 'greener' is to use **green** energy

Motivations

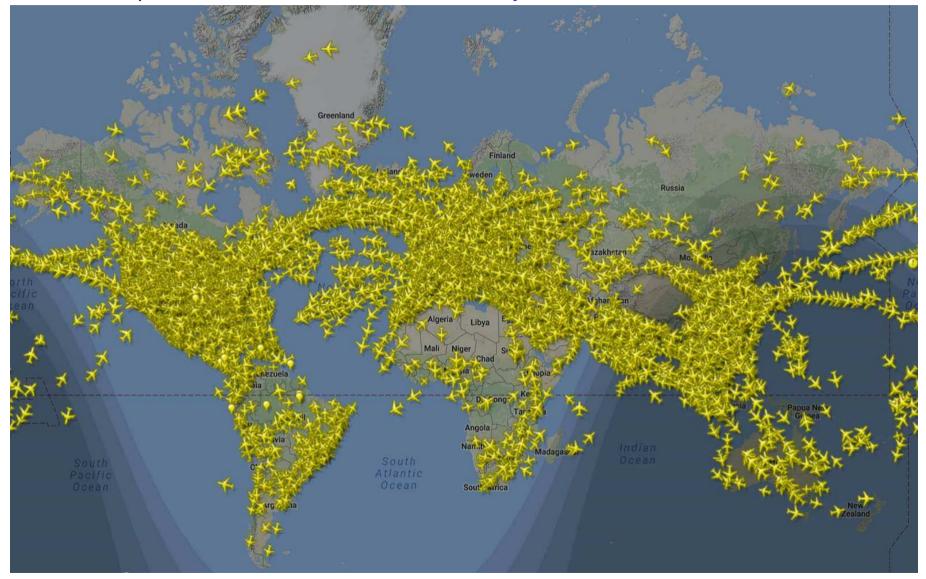
- Move 5G on to sky to complete interconnected world
 - When we travel by aeroplane, we disappear into connection black hole
 - Existing satellite-based and ground-to-air/air-to-ground techniques are very expensive and incapable of supporting Internet above the Cloud
 - Impossible to build ground stations to cover whole continent or over ocean
- Harvest traffic jam wasted energy for green computing to support 5G
 - 5G relies heavily on **signal processing**, consuming huge **computing resource**
 - Uneconomic to maintain dedicated computing facility at BS, RSU or AP to meet peak processing demand
 - C-RAN implementation to outsource baseband processing to cloud

This talk contains two parts, covering

- 1. How to move 5G to sky to realize Internet above the cloud
- 2. How to harvest traffic jam's computing power to support 5G signal processing

Part I: Realizing Internet above the Cloud: An Enabling Air-to-Air Transmission Technique

Joint work with Dr J. Zhang, University of Southampton

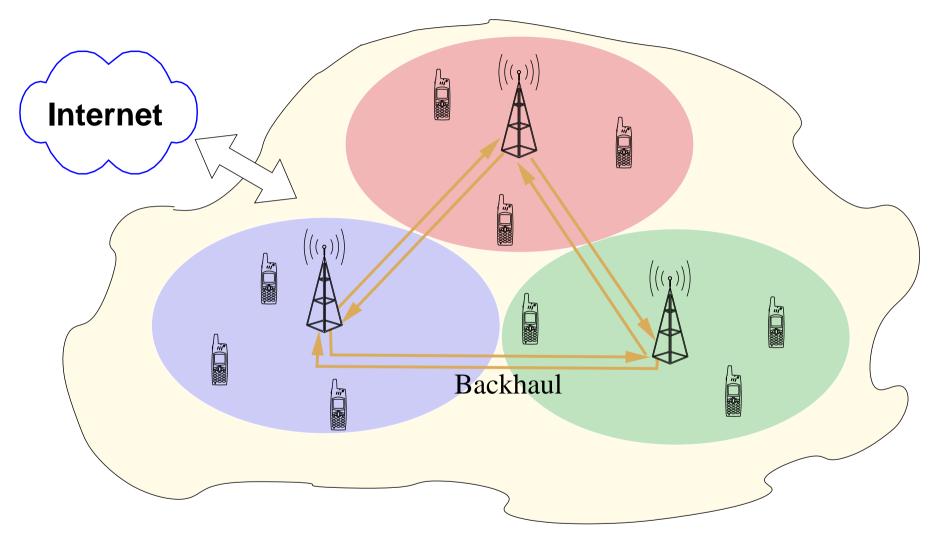

- Zhang, Chen, Maunder, Zhang, Hanzo, "Regularized zero-forcing precoding-aided adaptive coding and modulation for large-scale antenna array-based air-to-air communications," *IEEE J. Selected Areas Communications*, 36(9), 2087–2103, 2018
- Zhang, Chen, Maunder, Zhang, Hanzo, "Adaptive coding and modulation for large-scale antenna array-based aeronautical communications in the presence of cochannel interference," *IEEE Trans. Wireless Communications*, 17(2) 1343–1357, 2018

Next Generation Wireless

Our Sky

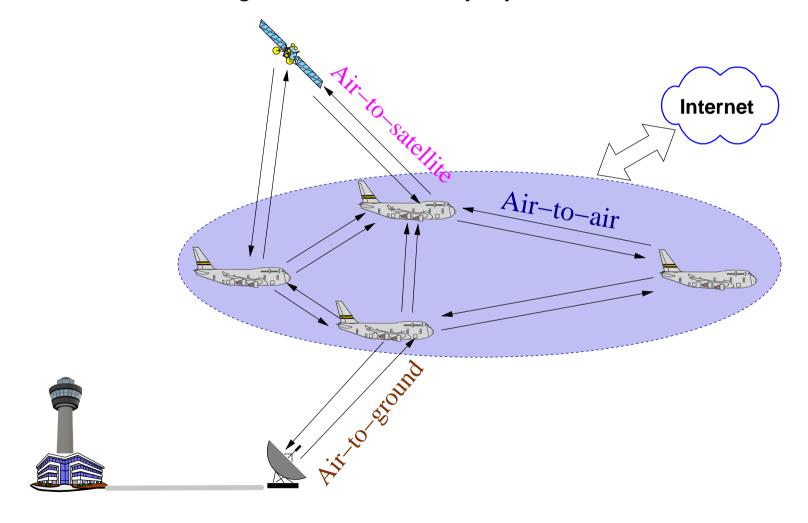
• Normal snapshot of world's commercial airspace

Internet above the Cloud


• Huge number of people are travelling by aeroplane, and sky is full of jumbo jets

- we all dream 'Internet above the Cloud'
- Vey important point: we are not talking aeronautical systems for air traffic control, surveillance, safety monitoring, etc
 - We CANNOT do anything even near to these systems!
- We are thinking NEW commercial aeronautical ad hoc network (AANET)
 - which enables us to do usual things at home, at work or travelling on land
- In this globally interconnected AANET, apart from huge amount of higher-layer protocols to be defined, including Internet gateway, cache policy, etc
 - we need to define physical layer enabling transmission protocol: which is the key to realize 5G in sky

Next Generation Wireless


Terrestrial Mobile Network

• Hidden from us are **backhaul** transmissions, which really enable us to do our usual things, such as mobile **Internet access**

Aeronautical Ad Hoc Network

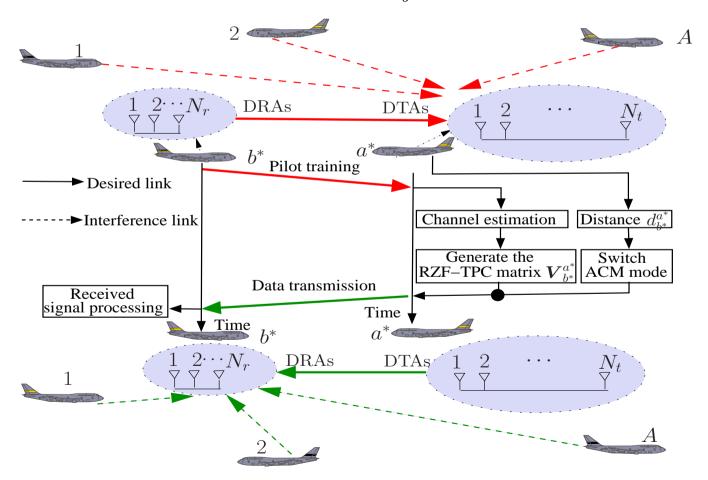
- Jumbo jet is a moving 'cell', where 'base station' and all its 'mobiles' or passengers move together
- 'Mobiles' or passengers can access to 'base station' via standard technique, such as WiFi
- Air-to-air transmissions, acting like backhaul, is really key to Internet access

Technical Considerations

- **Spectrum**: Better not use VHF and UHF bands, because
 - Existing air traffic systems mainly use VHF band of 118 MHz to 137 MHz
 - UHF band almost fully occupied by television broadcasting, mobile phones, and satellite communications, including GPS
 - No substantial idle frequency bands in VHF and UHF anyway
- Potential solution: Use super high frequency (SHF) band of 3 GHz to 30 GHz,
 e.g. 5 GHz carrier frequency for AANET application
 - Need international agreement
- Massive MIMO: To achieve high throughput and to maximize spectral efficiency, same bandwidth B_{total} reused by every jumbo jet \Rightarrow to combate interference
 - New antenna technology printing antenna array on aeroplane surface
 - Consider how large world's commercial jumbo jet fleet, price will come down

Transmission Technique

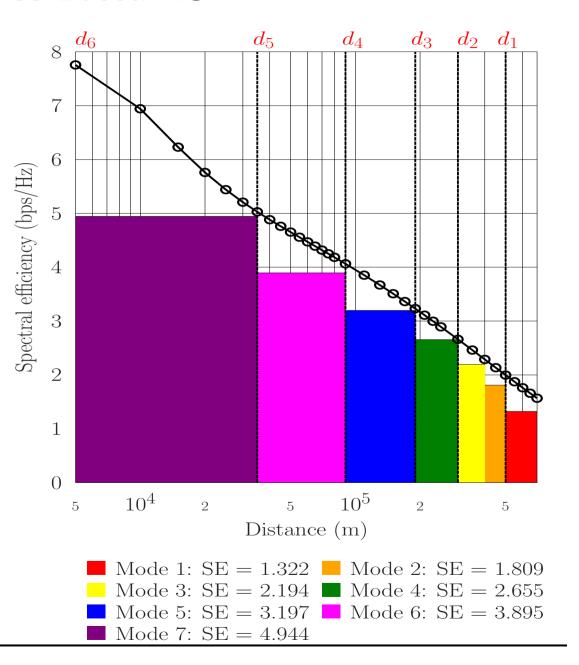
- Aeronautical channel characteristics: bad and good
 - Very high Doppler spread, owing to very high flight speed
 - Channel is very clean: Rician with line-of-sign component dominant
- Unlike terrestrial mobile channel, no local scatters around aeroplane en route, due to enforced minimum flight separation distance
 - Spatial correlation matrices of transmit array and receive array remain unchanged
 - Make massive MIMO implementation much easier
- New distance-based adaptive coding and modulation transmission scheme
 - Existing ACM schemes unsuitable, because it is difficult to acquire accurate estimate of instantaneous SNR or other channel-quality measure
 - Achievable throughput of aeronautical channel mainly depends on distance
 - Aeroplane readily has distance information measured accurately



Air-to-Air Transmission

- ullet Aircraft a^* calculates transmit precoding matrix based on channel estimate
- ullet Aircraft a^* selects an ACM mode to transmit data according to its distance $d_{b^*}^{a^*}$ to b^*

If
$$d_k \leq d_{b^*}^{a^*} < d_{k-1}$$
: choose mode $k; k \in \{1, 2, \dots, K\}$


 $d_0=D_{ ext{max}}$, maximum communication rage, and $d_{b^*}^{a^*}\geq D_{ ext{min}}$ for safety minimum separation

Distance-Based ACM

- Distance information is readily available
 - Every jumbo jet has a radar and is equipped with GPS
- $\bullet \ K = 7, \ D_{\rm max} = 740 \, {\rm km}, \ {\color{red} D_{\rm min}} = 5 \, {\rm km}$
 - $D_{\rm max}$: maximum distance for communication
 - D_{\min} : enforced safety separation
- If $d_k \leq d_{b^*}^{a^*} < d_{k-1}$: choose mode k
 - Mode 1: $d_1 \le d_{b^*}^{a^*} < d_0 = D_{\max}$
 - Mode 2: $d_2 \leq d_{b^*}^{a^*} < d_1$
 - Mode 3: $d_3 \leq d_{b^*}^{a^*} < d_2$
 - Mode 4: $d_4 \leq d_{b^*}^{a^*} < d_3$
 - Mode 5: $d_5 \leq d_{b_*^*}^{a^*} < d_4$
 - Mode 6: $d_6 \le d_{b^*}^{a^*} < d_5$
 - Mode 7: $D_{\min} = d_7 \le d_{b^*}^{a^*} < d_6$

Most of time ACM will operate in modes 7 or 6

ACM Design Example

Data Tx antennas $N_t = 64$, data Rx antennas $N_r = 4$, other parameters as in paper (*IEEE J. Selected Areas Communications*, 36(9), 2087–2103, 2018)

Mode	Modulation	Code	Spectral	Switching	Data rate	Total data
k		rate	efficiency	threshold	per Rx antenna	rate (Mbps)
			(bps/Hz)	$d_k\ (km)$	(Mbps)	
1	QPSK	0.706	1.323	500	7.974	31.895
2	8-QAM	0.642	1.813	400	10.876	43.505
3	8-QAM	0.780	2.202	300	13.214	52.857
4	16-QAM	0.708	2.665	190	15.993	63.970
5	16-QAM	0.853	3.211	90	19.268	77.071
6	32-QAM	0.831	3.911	35	23.464	93.853
7	64-QAM	0.879	4.964	5.56	29.783	119.130

- ullet To ensure successful transmission, distance thresholds $\{d_k\}_{k=1}^K$ are chosen so that
 - Spectrum efficiency of mode k is lower than theoretically achievable rate per data-receiving antenna in distance range of $[d_k, d_{k-1}]$
- ullet Even in worst scenario, $d_{b^*}^{a^*}$ in 500 km to 740 km, **31 Mbps** is achieved
 - Future L-band digital aeronautical communications system L-DACS1 only offers 273 kbps net user rate for direct aircraft-to-aircraft communication

Capability of AANET

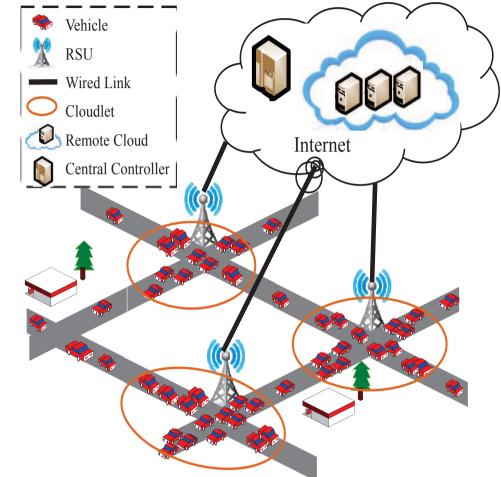
- Two aircraft fly at cruising speed of 920 km/h, heading in opposite direction
 - For first 1 min flight, 7 Gbits of data transmitted: average data rate 117 Mbps (not surprisingly as most time at Mode 7)
 - For first 10 min flight, 48 to 49 Gbits of data transmitted: average data rate
 81 Mbps
 - Over distance up to 740 km about 24 min flight (worst senario), 77 Gbits of data transmitted: average rate 53 Mbps
- This is with 5 MHz bandwidth, considering 50 MHz to 100 Hz bandwidth for 5G,
 - capable of connecting 'City in the Sky' and realizing 'Internet above the Cloud'
- **Comment**: It is easier to develop similar oceanic ad hoc network (OANET)
 - To connect 'City on the Ocean' and realizing 'Internet above the Wave'

Part II: JamCloud: Turning Traffic Jams into Computation Opportunities

Joint work with Dr Y. Li, Tsinghua University

- Xiao, Hou, Wang, Li, Hui, Chen, "JamCloud: Turning traffic jams into computation opportunities whose time has come," *IEEE Access*, 7, 115797–115815, 2019
- Hou, Li, Chen, Wu, Jin, Chen, "Vehicular fog computing: A viewpoint of vehicles as the infrastructures," *IEEE Trans. Vehicular Technology*, 65(6) 3860–3873, 2016 (received IEEE Vehicular Technology Society 2019 Jack Neubauer Memorial Award)

Traffic Jam



- Traffic jam don't we hate it
 - In 2018, average London driver lost 227 hours due to congestion and the cost of congestion per driver was £1,680
 - Beijing could be worst
- Can't we do something about it
 - How about turning traffic jams into computation opportunities

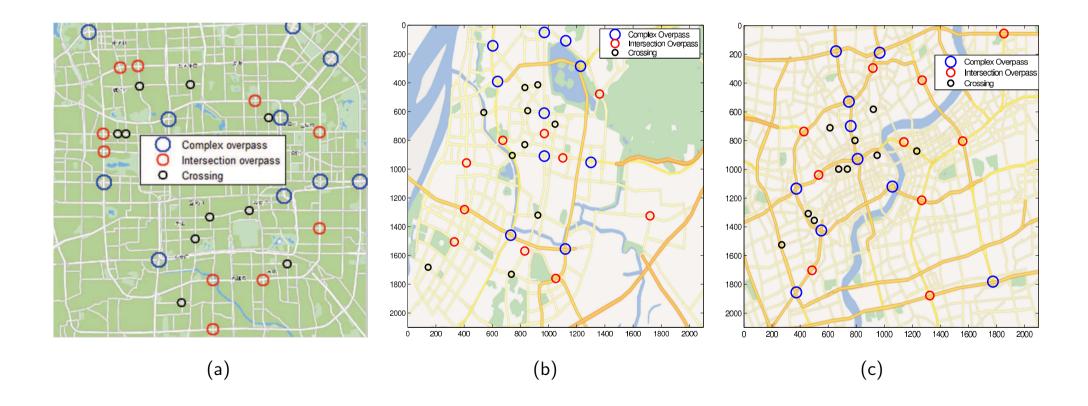
JamCloud

- Vehicles equipped with embedded computers jammed around intersections
 - With 5G, come intelligent city
 - Vehicles linked to BSs/RSUs/APs via V2I
 - Vehicles linked to each other via V2V (D2D)
- Vehicles congested around an intersection form mobile or vehicular cloudlet
 - BS/RSU/AP can collect computing resource offered by each congested vehicle
 - Aggregate computing resources of vehicles in area to form mobile cloudlet
- BS/RSU/AP can harvest computation capacity of mobile cloudlet, which otherwise is wasted
 - Send baseband processing jobs to cloudlet
 - Handy cloudlet is nearby for low latency
- Heuristically, dynamics of computation capacity of mobile cloudlet match well with dynamics of BS baseband processing demands
 - Peak communication demand corresponds to cloudlet's peak computing capacity
 - Early morning, very little computing capacity but also very little communication demand

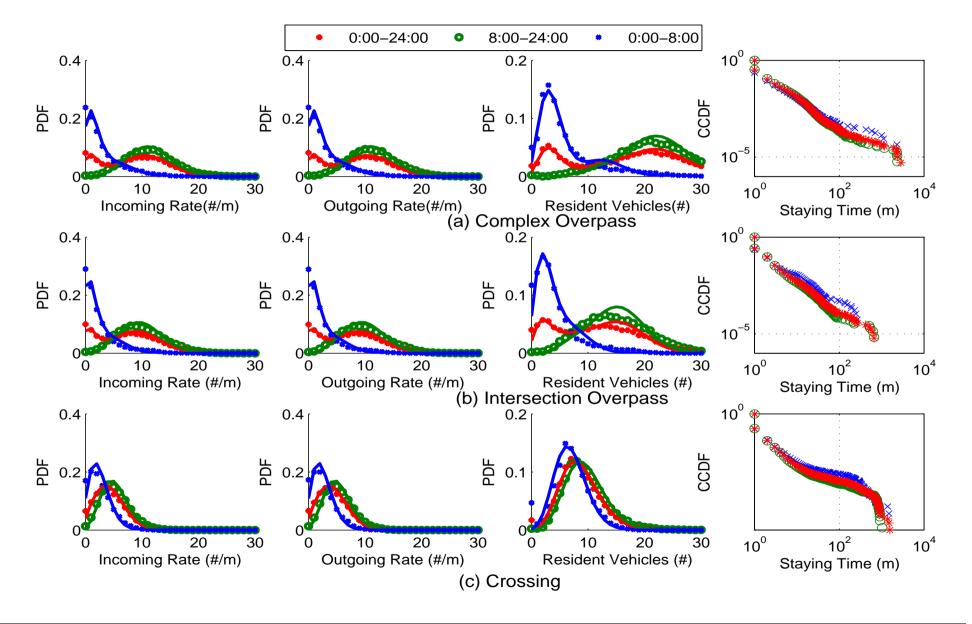
Fundamental Issues

- 5G will enable intelligent transport system and intelligent city
 - Collecting resources and allocating computing jobs can be done
- What is **computation capacity** of a vehicular mobile cloudlet?
 - Statistics of vehicles' mobility patterns are fundamental to answer this question
 - From vehicular (taxi) mobility traces, we collect statistics on mobility patterns of vehicles, to model and estimate computation capacity of mobile cloudlet.
- What is overall achievable performance of JamCloud consisting of local cloudlets?
 - Computation capacity of mobile cloudlet defined as aggregate floating point operation speed (Gflops/s)
 - Satisfying probability of cloudlet: Computation demands met by its computation resources
 - Probability of cloud-wide satisfaction: If all cloudlets are in computationally satisfactory state, JamCloud in computationally satisfactory state

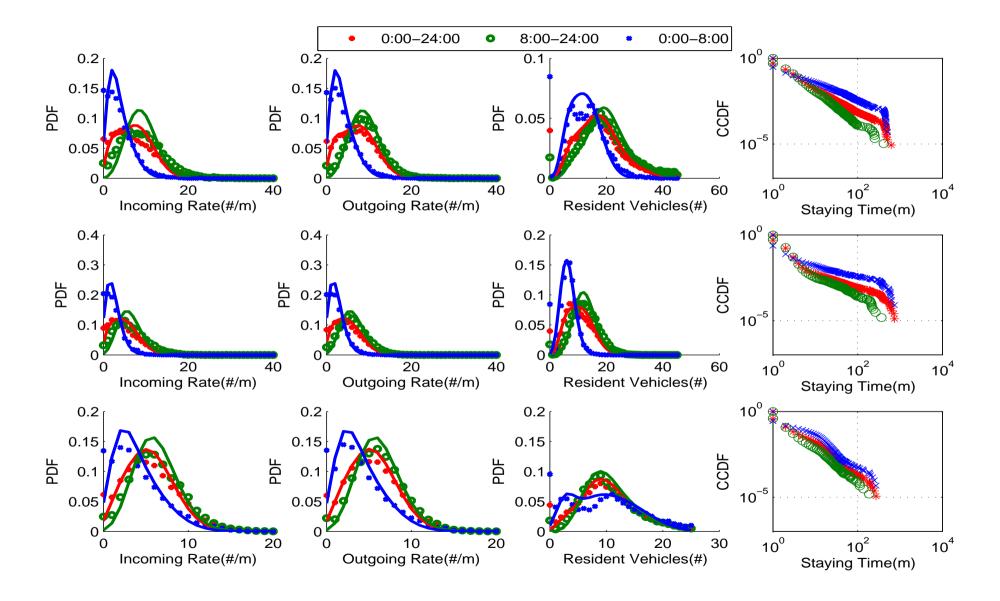
Statistic Model


 Mobile cloudlet: vehicles enter cloudlet, congest or queue at intersection, and leave cloudlet – incoming vehicles, staying (resident) time, outgoing vehicles

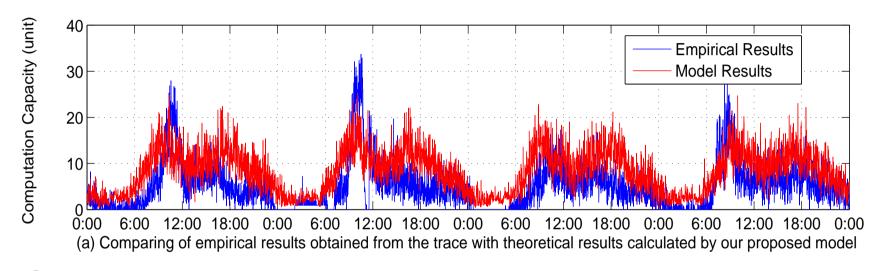
- Poisson distributions for numbers of incoming, outgoing and resident vehicles
- Means of incoming, outgoing and resident numbers fitted from vehicular traces
- **JamCloud** consists of N vehicular cloudlets: $\{A_1, \dots, A_N\}$
 - Queueing network model: $\mathcal{N} = \{A_1, \cdots, A_N\}$ N server nodes with infinite queue size
 - Exogenous arrival to each server follows Poisson process, hence an open Jackson network
- We use large scale taxi mobility traces to model vehicular mobility patterns, and fit model parameters
 - Readily available, sufficiently large, spatially and temporally well distributed
 - To include all vechicle, such as buses and private cars, we only need to 'scale up' by a factor

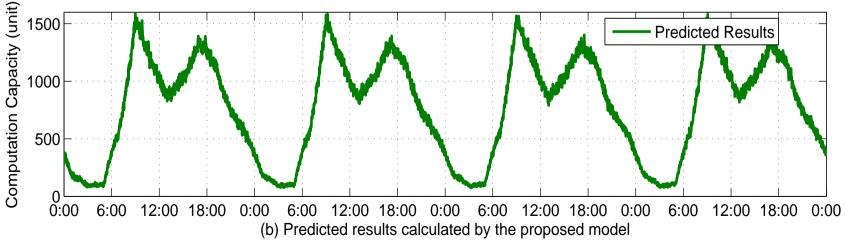


Parameter Fitting


- Taxi mobility traces of Beijing, Nanjing and Shanghai are used to collect statistics
- Locations of the selected regions (complex overpass, intersection overpass, crossing)in: (a) Beijing, (b) Nanjing, and (c) Shanghai.

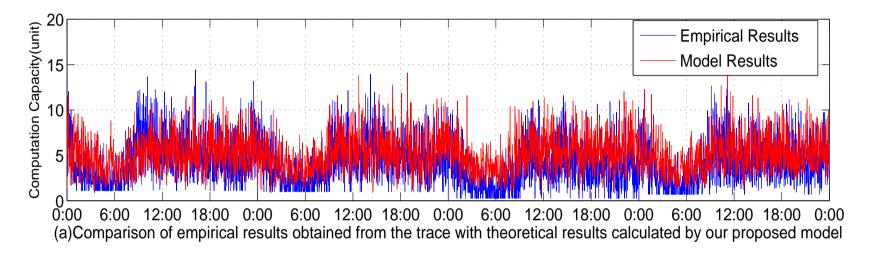
Beijing: Cloudlet Modeling

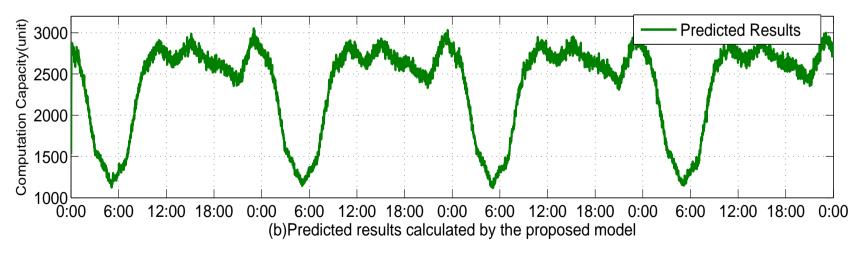

Nanjing: Cloudlet Modeling



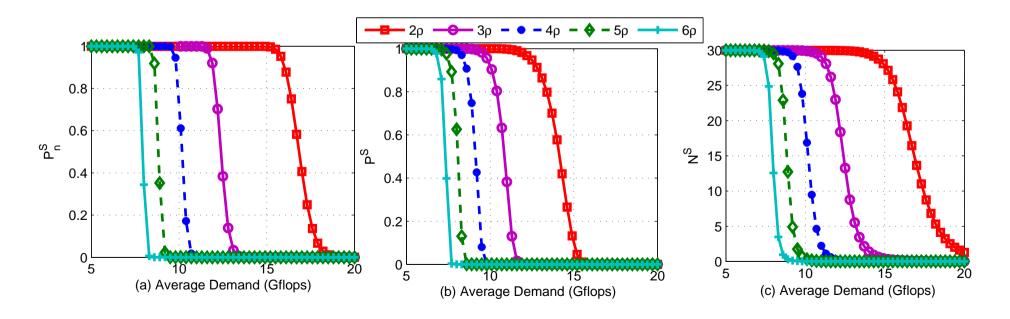
Beijing: Cloudlet Computing Capacity

- Predicted Results: assume total number of vehicles on road in Beijing is 3 million
- Two capacity peaks correspond to two rush hours, and low capacity at earily morning

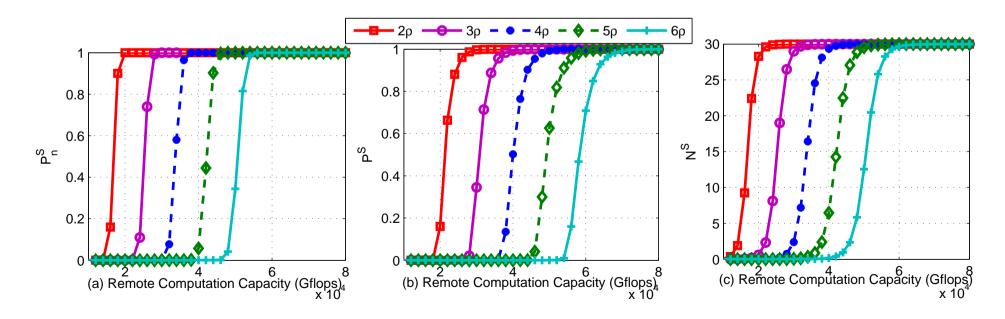




Shanghai: Cloudlet Computing Capacity


- Predicted Results: assume total number of vehicles on road in Shanghai is 2,470,000
- Capacity peak all day to midnight, and low capacity at early morning

JamCloud Performance


- N=30 selected intersections in Beijing, i.e., **30** cloudlets
 - ρ : average taxi number of cloudlet, $m \times \rho$: average vehicle number of cloudlet
 - Individual vehicles capacity 2 Gflops
 - Total remote cloud capacity available: 50,000 Gflops
- (a) cloudlet satisfying probability, (b) cloudlet-wide satisfying probability, and (c) number of satisfied cloudlets
 - For 2ρ , when average demand per cloudlet is 10 Gflops, number of satisfied cloudlets is 30, cloudlet satisfying probability is 100%, and cloudlet-wide satisfying probability is 100%

JamCloud Performance (2)

- N=30 selected intersections in Beijing, i.e., **30** cloudlets
 - ρ : average taxi number of cloudlet, $m \times \rho$: average vehicle number of cloudlet
 - Individual vehicles capacity 2 Gflops
 - Average computation demand 10 Gflops
- (a) cloudlet satisfying probability, (b) cloudlet-wide satisfying probability, and (c) number of satisfied cloudlets
 - For 2ρ , very little remote cloud is needed, less than 4 Gflops, to achieve all 30 cloudlets satisfied, cloudlet satisfying probability 100%, and cloudlet-wide satisfying probability 100%

Discussions

• Dynamical capacity of JamCloud matches well network communication demand

- Peak computation capacity of vehicular cloudlet coincides with peak communication/computing demand of BS/RSU/AP
- Suitable for helping 5G baseband signal processing computation
- JamCloud turns energy otherwise wasted into computation opportunities, helping to realize greener communications
- ParkingCloud: vehicles parked at street or car park can be similarly turned into cloud computing capacity
 - With revolution of making vehicles electric, car park is also charging station,
 ParkingCloud will be particularly relevant
- 5G revolution brings integrated intelligent communication and computing
 - New concepts, such as JamCloud and ParkingCloud will contribute to make intelligent communication and computing system greener

Conclusions

• To truly realize anywhere anytime 5G, we need to connect City in the Sky and City on the Ocean, last frontier of connection black holes

- Commercial aeronautical ad hoc network and oceanic ad hoc network to complete connecting world, realizing Internet above Cloud and Internet above Wave
- In connecting City in the Sky, effective air-to-air transmission technology is key
- 5G will enable integrated **intelligent** communication and computing, and will **revolutionize** society
 - Vital to making intelligent communication and computing system greener, e.g.,
 with JamCloud and ParkingCloud
 - JamCloud, turning traffic jams into computation opportunities, in particular, will help to make 5G greener

