Orthogonal Forward Selection for Constructing the Radial Basis Function Network with Tunable Nodes

Sheng Chen[†], Xia Hong[‡] and Chris J. Harris[†]

[†] School of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, U.K. E-mails: {sqc,cjh}@ecs.soton.ac.uk

[‡] Department of Cybernetics University of Reading, Reading RG6 6AY, U.K. E-mail: x.hong@reading.ac.uk

Presented at 2005 International Conference on Intelligent Computing August 23-26, 2005, Hefei, China

S. Chen wish to thank the support of the United Kingdom Royal Academy of Engineering.

Overview

RBF network has found wide applications in machine learning and engineering

○ Nonlinear optimisation to determine all basis centres, variances and weights

Local minimum and structure determination problems

 \bigcirc Clustering to determine basis centres and variances

Structure determination problem

 \bigcirc Orthogonal least squares and sparse kernel modelling

Select centres from data points, cross validation for single common basis variance

What's new. Combining OLS / nonlinear optimisation: OFS to construct RBF nodes one by one, each selected node is determined by nonlinear optimisation

RBF Network

 \bigcirc RBF network modelling of training data $\{(\mathbf{x}_k, y_k)\}_{k=1}^N$

$$y_k = \hat{y}_k + e_k = \sum_{i=1}^M w_i g_i(\mathbf{x}_k) + e_k = \mathbf{g}^T(k)\mathbf{w} + e_k$$

M: number of RBF nodes,

$$\mathbf{w} = [w_1 \ w_2 \cdots w_M]^T$$
: RBF weights
 $\mathbf{g}(k) = [g_1(\mathbf{x}_k) \ g_2(\mathbf{x}_k) \cdots g_M(\mathbf{x}_k)]^T$: RBF nodes or regressors

○ Generic RBF node

$$g_i(\mathbf{x}) = K\left(\sqrt{\left(\mathbf{x} - \boldsymbol{\mu}_i\right)^T \boldsymbol{\Sigma}_i^{-1} \left(\mathbf{x} - \boldsymbol{\mu}_i\right)}\right)$$

 μ_i : *i*th RBF centre $\Sigma_i = \text{diag}\{\sigma_{i,1}^2, \cdots, \sigma_{i,m}^2\}$: diagonal covariance matrix of *i*th node $K(\bullet)$: RBF or kernel function.

Electronics and Computer Science

Learning

- igcop Learning: determining number of nodes M, values of all $oldsymbol{\mu}_i$, $oldsymbol{\Sigma}_i$ and w_i
- *Criterion*: should be model generalisation capability rather than training performance
 Leave-one-out (LOO) criterion is a measure of generalisation
- State-of-the-art: locally regularised orthogonal least squares with leave-one-out (LROLS-LOO)
- S. Chen, X. Hong, C.J. Harris and P.M. Sharkey, "Sparse modeling using orthogonal forward regression with PRESS statistic and regularization," *IEEE Trans. Systems, Man and Cybernetics, Part B*, 34 (2), 898–911, 2004

Select centres from training input points and adopt a single common variance for every node

 \bigcirc *What's new*: extend to tunable nodes

Centres not restricted to training input points and each node has a diagonal covariance matrix Orthogonal forward selection with leave-one-out (OFS-LOO)

Orthogonal Decomposition

 \bigcirc RBF model over training set

$$\mathbf{y} = \mathbf{G}\mathbf{w} + \mathbf{e}$$

where $\mathbf{G} = [\mathbf{g}_1 \ \mathbf{g}_2 \cdots \mathbf{g}_M]$ is regression matrix

University

of Southampton

○ Orthogonal decomposition

 $\mathbf{G} = \mathbf{P}\mathbf{A}$

where orthogonal matrix $\mathbf{P} = [\mathbf{p}_1 \ \mathbf{p}_2 \cdots \mathbf{p}_M]$ has orthogonal columns

○ Regression model becomes

Electronics and

Computer Science

 $\mathbf{y} = \mathbf{P}\boldsymbol{\theta} + \mathbf{e}$

with $\boldsymbol{\theta} = [\theta_1 \; \theta_2 \cdots \theta_M]^T = \mathbf{A} \, \mathbf{w}$

○ Space spanned by original model bases is identical to space spanned by orthogonal model bases

$$\hat{y}_k = \mathbf{g}^T(k)\mathbf{w} = \mathbf{p}^T(k)\boldsymbol{\theta}$$

Notations: \mathbf{g}_k is kth column of \mathbf{G} while $\mathbf{g}^T(k)$ is kth row of \mathbf{G} ; \mathbf{p}_k is kth column of \mathbf{P} while $\mathbf{p}^T(k)$ is kth row of \mathbf{P}

Leave-One-Out Criterion

 \bigcirc LOO mean square error for *n*-term RBF model

$$J_n = \frac{1}{N} \sum_{i=1}^{N} \left(e_i^{(n,-i)} \right)^2 = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{e_i^{(n)}}{\eta_i^{(n)}} \right)^2$$

 $e_i^{(n,-i)}$: LOO modelling error, $e_i^{(n)}$: usual modelling error, $\eta_i^{(n)}$: LOO weighting

 \bigcirc Computation of LOO criterion J_n is very efficient, since

$$e_k^{(n)} = y_k - \sum_{i=1}^n \theta_i p_i(k) = e_k^{(n-1)} - \theta_n p_n(k)$$

$$\eta_k^{(n)} = 1 - \sum_{i=1}^n \frac{p_i^2(k)}{\mathbf{p}_i^T \mathbf{p}_i + \lambda} = \eta_k^{(n-1)} - \frac{p_n^2(k)}{\mathbf{p}_n^T \mathbf{p}_n + \lambda}$$

where $\lambda \geq 0$ is a small regularisation parameter

OFS with LOO Criterion

 \bigcirc OFS-LOO algorithm constructs RBF nodes one by one: at $n{\rm th}$ stage determine $n{\rm th}$ RBF node by minimising J_n

$$\min_{\boldsymbol{\mu}_n,\boldsymbol{\Sigma}_n} J_n\left(\boldsymbol{\mu}_n,\boldsymbol{\Sigma}_n\right)$$

 $\bigcirc J_n$ is at least locally convex:

There exists M such that $J_{n-1} > J_n$ if $n \leq M$ and $J_M \leq J_{M+1}$

Construction procedure is automatically terminated, and user does not need to specify any learning algorithmic parameter

 \bigcirc After OFS-LOO construction, LROLS-LOO algorithm is used to automatically optimise regularisation parameters and to further reduce model size M

Positioning and shaping a RBF node

 \bigcirc Determine *n*th RBF centre μ_n and covariance matrix Σ_n by minimising LOO criterion $J_n(\mu_n, \Sigma_n)$ is a non-convex nonlinear optimisation problem

Gradient-based techniques may become trapped at a local minimum

Global optimisation techniques are preferred, e.g. genetic algorithms

 \bigcirc We adopt a global search algorithm called the repeated weighted boosting search (RWBS)

S. Chen, X.X. Wang and C.J. Harris, "Experiments with repeating weighted boosting search for optimization in signal processing applications," *IEEE Trans.* Systems, Man and Cybernetics, Part B, 35 (4), 682–693, 2005

RWBS is a very simple but effective global optimisation search algorithm

Repeated Weighted Boosting Search

Consider task of minimising $J(\mathbf{u})$

Outer Loop: N_G number of generations

Initialisation: keep best solution found in previous generation as \mathbf{u}_1 and randomly choose rest

of population $\mathbf{u}_2, \cdots, \mathbf{u}_{P_S}$

Inner Loop: N_I iterations

• Perform a convex combination

$$\mathbf{u}_{P_S+1} = \sum_{i=1}^{P_S} \,\delta_i \mathbf{u}_i$$

• Weightings

$$\delta_i \geq 0$$
 and $\sum_{i=1}^{P_S} \delta_i = 1$

are adopted (boosting) to reflect goodness of \mathbf{u}_i

• \mathbf{u}_{P_S+1} or its mirror image \mathbf{u}_{P_S+2} replaces worst member in population \mathbf{u}_i , $1 \le i \le P_S$ End of *Inner Loop*

End of *Outer Loop*

Optimisation Example

 \bigcirc Population size $P_S=6,$ number of Inner iterations $N_I=20$ and number of generations $N_G=12$

 \bigcirc 100 random experiments, populations of all 100 runs converge to global minimum

OFS-LOO Algorithm

Give population size P_S , number of generations N_G , accuracy for terminating weighted boosting search ξ_B , and initial conditions

$$e_k^{(0)} = y_k$$
 and $\eta_k^{(0)} = 1, \ 1 \le k \le N$, and $J_0 = \frac{1}{N} \mathbf{y}^T \mathbf{y} = \frac{1}{N} \sum_{k=1}^N y_k^2$

Outer loop: generations For $l = 1 : N_G$

Generation initialisation: Initialise population by setting $\mathbf{u}_{1}^{[l]} = \mathbf{u}_{\text{best}}^{[l-1]}$ and randomly generating rest of population $\mathbf{u}_{i}^{[l]}$, $2 \le i \le P_S$, where $\mathbf{u}_{\text{best}}^{[l-1]}$ denotes solution found in previous generation. If l = 1, $\mathbf{u}_{1}^{[l]}$ is also randomly chosen. Weighted boosting search initialisation: Assign initial distribution weightings $\delta_i(0) = \frac{1}{P_S}$, $1 \le i \le P_S$, for population. Then 1. For $1 \le i \le P_S$, generate \mathbf{g}_n^{i} from $\mathbf{u}_i^{[l]}$, candidates for *n*th model column, and orthogonalise them:

$$\alpha_{j,n}^{i)} = \mathbf{p}_j^T \mathbf{g}_n^{i)} / \mathbf{p}_j^T \mathbf{p}_j, \ 1 \le j < n, \quad \mathbf{p}_n^{i)} = \mathbf{g}_n^{i)} - \sum_{j=1}^{n-1} \alpha_{j,n}^{i)} \mathbf{p}_j, \quad \theta_n^{i)} = \left(\mathbf{p}_n^{i}\right)^T \mathbf{y} / \left(\left(\mathbf{p}_n^{i}\right)^T \mathbf{p}_n^{i)} + \lambda\right)$$
(1)

2. For $1 \leq i \leq P_S$, calculate LOO cost function value of each $\mathbf{u}_i^{[l]}$:

$$e_{k}^{(n)}(i) = e_{k}^{(n-1)} - p_{n}^{i}(k)\theta_{n}^{i}, \quad \eta_{k}^{(n)}(i) = \eta_{k}^{(n-1)} - \left(p_{n}^{i}(k)\right)^{2} / \left(\left(\mathbf{p}_{n}^{i}\right)^{T}\mathbf{p}_{n}^{i} + \lambda\right), \quad 1 \le k \le N$$
(2)

$$J_n^{(i)} = \frac{1}{N} \sum_{k=1}^{N} \left(e_k^{(n)}(i) / \eta_k^{(n)}(i) \right)^2$$
(3)

where $p_n^{(i)}(k)$ is kth element of $\mathbf{p}_n^{(i)}$.

Inner loop: weighted boosting search t = 0; t = t + 1

Step 1: Boosting

1. Find

$$i_{\text{best}} = \arg \min_{1 \le i \le P_S} J_n^{i)} \text{ and } i_{\text{worst}} = \arg \max_{1 \le i \le P_S} J_n^{i}$$

Denote $\mathbf{u}_{\text{best}}^{[l]} = \mathbf{u}_{i_{\text{best}}}^{[l]}$ and $\mathbf{u}_{\text{worst}}^{[l]} = \mathbf{u}_{i_{\text{worst}}}^{[l]}$.
2. Normalise the cost function values

$$\bar{J}_{n}^{(i)} = \frac{J_{n}^{(i)}}{\sum_{m=1}^{P_{S}} J_{n}^{(m)}}, \ 1 \le i \le P_{S}$$

3. Compute a weighting factor β_t according to

$$\xi_t = \sum_{i=1}^{P_S} \delta_i(t-1) \bar{J}_n^{i}, \ \beta_t = \frac{\xi_t}{1-\xi_t}$$

4. Update distribution weightings for $1 \leq i \leq P_S$ and then normalise them

$$\delta_i(t) = \begin{cases} \delta_i(t-1)\beta_t^{\bar{J}_n^{i}}, & \text{for } \beta_t \leq 1\\ \delta_i(t-1)\beta_t^{1-\bar{J}_n^{i}}, & \text{for } \beta_t > 1 \end{cases} \qquad \delta_i(t) = \frac{\delta_i(t)}{\sum_{m=1}^{P_S} \delta_m(t)}$$

Step 2: Parameter updating

1. Construct $(P_{S}+1) {\rm th}$ and $(P_{S}+2) {\rm th}$ points using

$$\mathbf{u}_{P_S+1} = \sum_{i=1}^{P_S} \delta_i(t) \mathbf{u}_i^{[l]} \quad \mathbf{u}_{P_S+2} = \mathbf{u}_{\text{best}}^{[l]} + \left(\mathbf{u}_{\text{best}}^{[l]} - \mathbf{u}_{P_S+1}\right)$$

2. Calculate $\mathbf{g}_n^{P_S+1}$ and $\mathbf{g}_n^{P_S+2}$ from \mathbf{u}_{P_S+1} and \mathbf{u}_{P_S+2} , orthogonalise these two candidate model columns (as in (1)), and compute their corresponding LOO cost function values J_n^{i} , $i = P_S + 1$, $P_S + 2$ (as in (2) and (3)). Then find

$$i_* = \arg \min_{i=P_S+1, P_S+2} J_n^{i)}$$

The pair
$$(\mathbf{u}_{i*}, J_n^{i*})$$
 then replaces $(\mathbf{u}_{\text{worst}}^{[l]}, J_n^{i\text{worst}})$ in population f $\|\mathbf{u}_{P_S+1} - \mathbf{u}_{P_S+2}\| < \xi_B$, exit inner loop.

End of inner loop

Solution found in *l*th generation is $\mathbf{u} = \mathbf{u}_{\text{best}}^{[l]}$.

End of outer loop

This yields:

solution
$$\mathbf{u} = \mathbf{u}_{ ext{best}}^{[N_G]}$$
, i.e. $oldsymbol{\mu}_n$ and $oldsymbol{\Sigma}_n$ of n th RBF node

nth model column \mathbf{g}_n

orthogonalisation coefficients $lpha_{j,n}$, $1 \leq j < n$

corresponding orthogonal model column \mathbf{p}_n and weight θ_n

$$n\text{-}\mathsf{term}$$
 modelling errors $e_k^{(n)}$ and associated LOO modelling error weightings $\eta_k^{(n)}$ for $1\leq k\leq N$

Electronics and Computer Science

Engine Data Modelling

 \bigcirc Modelling relationship between fuel rack position (input u_k) and engine speed (output y_k) for a Leyland TL11 turbocharged, direct injection diesel engine operated at low engine speed

 \bigcirc Data set contains 410 pairs of input-output samples (u_k, y_k) , modelled as $y_k = f_s(\mathbf{x}_k) + e_k$ with $\mathbf{x}_k = [y_{k-1} \ u_{k-1} \ u_{k-2}]^T$, first 210 data points for training and last 200 points for testing

 \bigcirc LOO mean square error as function of model size for engine data set

○ OFS-LOO constructed 17 RBF nodes, LROLS-LOO then reduced model to 15 nodes

 \bigcirc Results were compared with those obtained by SVM and LROLS-LOO

○ Comparison of SVM, LROLS-LOO and OFS-LOO algorithms for engine data set

algorithm	RBF type	model size	MSE over training set	MSE over test set
SVM	fixed Gaussian	92	0.000447	0.000498
LROLS-LOO	fixed Gaussian	22	0.000453	0.000490
OFS-LOO	tunable Gaussian	15	0.000466	0.000480

 \bigcirc Model output \hat{y}_k and error $e_k = y_k - \hat{y}_k$ of 15-node RBF network for engine data set

Gas Furnace Data Modelling

 \bigcirc Modelling relationship between coded input gas feed rate (input u_k) and CO₂ concentration (output y_k) for a gas furnace data set

 \bigcirc Data set contains 296 pairs of input-output samples (u_k, y_k) , modelled as $y_k = f_s(\mathbf{x}_k) + e_k$ with $\mathbf{x}_k = [y_{k-1} \ y_{k-2} \ y_{k-3} \ u_{k-1} \ u_{k-2} \ u_{k-3}]^T$, all the data points were used for training

 \bigcirc LOO mean square error as function of model size for gas furnace data set

○ OFS-LOO constructed 16 RBF nodes, LROLS-LOO then reduced model to 15 nodes

 \bigcirc Results were compared with those obtained by SVM and LROLS-LOO

○ Comparison of SVM, LROLS-LOO and OFS-LOO algorithms for gas furnace data set

algorithm	RBF type	model size	training MSE	LOO MSE
SVM	fixed Gaussian	62	0.052416	0.054376
LROLS-LOO	fixed thin-plate-spline	28	0.053306	0.053685
OFS-LOO	tunable Gaussian	15	0.054306	0.054306

 \bigcirc Model output \hat{y}_k and error $e_k = y_k - \hat{y}_k$ of 15-node RBF network for gas furnace data set

Boston Housing Data Modelling

○ Boston Housing: http://www.ics.uci.edu/~mlearn/MLRepository.html

Data set comprises 506 data points with 14 variables

Predicting median house value from remaining 13 attributes

 \bigcirc Modelling: randomly selected 456 data points from data set for training and used remaining 50 data points to form test set

Average results were given over 100 repetitions

○ Comparison of SVM, LROLS-LOO and OFS-LOO algorithms for Boston Housing data set

algorithm	RBF type	model size	training MSE	test MSE
SVM	fixed Gaussian	243.2 ± 5.3	6.7986 ± 0.4444	23.1750 ± 9.0459
LROLS-LOO	fixed Gaussian	58.6 ± 11.3	12.9690 ± 2.6628	17.4157 ± 4.6670
OFS-LOO	tunable Gaussian	34.6 ± 8.4	10.0997 ± 3.4047	14.0745 ± 3.6178

Conclusions

- A novel construction algorithm has been proposed for regression modelling using the radial basis function network with **tunable nodes**
- Proposed algorithm has ability to tune centre and covariance matrix of individual radial basis function node to minimise leave-one-out mean square error
- A global search algorithm, referred to as **RWBS**, has been adopted to construct radial basis function nodes in an orthogonal forward selection procedure
- Model construction procedure is fully automatic and user does not need to specify any learning algorithmic parameter
- The proposed **OFS-LOO** approach offers enhanced modelling capability with very small radial basis function network models

