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Overview

RBF network has found wide applications in machine learning and engineering

© Nonlinear optimisation to determine all basis centres, variances and weights

Local minimum and structure determination problems

© Clustering to determine basis centres and variances

Structure determination problem

© Orthogonal least squares and sparse kernel modelling

Select centres from data points, cross validation for single common basis variance

What’s new. Combining OLS / nonlinear optimisation: OFS to construct RBF
nodes one by one, each selected node is determined by nonlinear optimisation
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RBF Network

© RBF network modelling of training data {(xk, yk)}N
k=1

yk = ŷk + ek =

M∑
i=1

wigi(xk) + ek = gT
(k)w + ek

M : number of RBF nodes,

w = [w1 w2 · · ·wM ]T : RBF weights

g(k) = [g1(xk) g2(xk) · · · gM(xk)]
T : RBF nodes or regressors

© Generic RBF node

gi(x) = K

(√
(x− µi)

T Σ−1
i (x− µi)

)
µi: ith RBF centre

Σi = diag{σ2
i,1, · · · , σ2

i,m}: diagonal covariance matrix of ith node

K(•): RBF or kernel function.

3



Communication Group S Chen

Learning

© Learning: determining number of nodes M , values of all µi, Σi and wi

© Criterion: should be model generalisation capability rather than training performance

Leave-one-out (LOO) criterion is a measure of generalisation

© State-of-the-art: locally regularised orthogonal least squares with leave-one-out (LROLS-LOO)

S. Chen, X. Hong, C.J. Harris and P.M. Sharkey, “Sparse modeling using orthogonal

forward regression with PRESS statistic and regularization,” IEEE Trans. Systems, Man
and Cybernetics, Part B, 34 (2), 898–911, 2004

Select centres from training input points and adopt a single common variance for every node

© What’s new: extend to tunable nodes

Centres not restricted to training input points and each node has a diagonal covariance matrix

Orthogonal forward selection with leave-one-out (OFS-LOO)
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Orthogonal Decomposition

© RBF model over training set

y = Gw + e

where G = [g1 g2 · · · gM ] is regression matrix

© Orthogonal decomposition

G = PA

where orthogonal matrix P = [p1 p2 · · · pM ] has orthogonal columns

© Regression model becomes

y = Pθ + e

with θ = [θ1 θ2 · · · θM ]T = A w

© Space spanned by original model bases is identical to space spanned by orthogonal model bases

ŷk = gT
(k)w = pT

(k)θ

Notations: gk is kth column of G while gT (k) is kth row of G; pk is kth column of P while

pT (k) is kth row of P
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Leave-One-Out Criterion

© LOO mean square error for n-term RBF model

Jn =
1

N

N∑
i=1

(
e

(n,−i)
i

)2

=
1

N

N∑
i=1

(
e

(n)
i

η
(n)
i

)2

e
(n,−i)
i : LOO modelling error, e

(n)
i : usual modelling error, η

(n)
i : LOO weighting

© Computation of LOO criterion Jn is very efficient, since

e
(n)
k = yk −

n∑
i=1

θipi(k) = e
(n−1)
k − θnpn(k)

η
(n)
k = 1−

n∑
i=1

p2
i (k)

pT
i pi + λ

= η
(n−1)
k −

p2
n(k)

pT
npn + λ

where λ ≥ 0 is a small regularisation parameter
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OFS with LOO Criterion

© OFS-LOO algorithm constructs RBF nodes one by one: at nth stage determine
nth RBF node by minimising Jn

min
µn,Σn

Jn (µn,Σn)

© Jn is at least locally convex:

There exists M such that Jn−1 > Jn if n ≤ M and JM ≤ JM+1

Construction procedure is automatically terminated, and user does not need to
specify any learning algorithmic parameter

© After OFS-LOO construction, LROLS-LOO algorithm is used to automatically
optimise regularisation parameters and to further reduce model size M
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Positioning and shaping a RBF node

© Determine nth RBF centre µn and covariance matrix Σn by minimising LOO
criterion Jn (µn,Σn) is a non-convex nonlinear optimisation problem

Gradient-based techniques may become trapped at a local minimum

Global optimisation techniques are preferred, e.g. genetic algorithms

© We adopt a global search algorithm called the repeated weighted boosting
search (RWBS)

S. Chen, X.X. Wang and C.J. Harris, “Experiments with repeating weighted
boosting search for optimization in signal processing applications,” IEEE Trans.
Systems, Man and Cybernetics, Part B, 35 (4), 682–693, 2005

RWBS is a very simple but effective global optimisation search algorithm
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Repeated Weighted Boosting Search

Consider task of minimising J(u)

Outer Loop: NG number of generations

Initialisation: keep best solution found in previous generation as u1 and randomly choose rest

of population u2, · · · , uPS

Inner Loop: NI iterations

• Perform a convex combination

uPS+1 =

PS∑
i=1

δiui

• Weightings

δi ≥ 0 and

PS∑
i=1

δi = 1

are adopted (boosting) to reflect goodness of ui

• uPS+1 or its mirror image uPS+2 replaces worst member in population ui, 1 ≤ i ≤ PS

End of Inner Loop
End of Outer Loop
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Optimisation Example

© Population size PS = 6, number of Inner iterations NI = 20 and number of
generations NG = 12

© 100 random experiments, populations of all 100 runs converge to global
minimum
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OFS-LOO Algorithm
Give population size PS , number of generations NG, accuracy for terminating weighted boosting search ξB , and initial conditions

e
(0)
k

= yk and η
(0)
k

= 1, 1 ≤ k ≤ N, and J0 =
1

N
yT y =

1

N

N∑
k=1

y
2
k

Outer loop: generations For l = 1 : NG

Generation initialisation: Initialise population by setting u
[l]
1 = u

[l−1]
best

and randomly generating rest of population u
[l]
i

, 2 ≤ i ≤ PS ,

where u
[l−1]
best

denotes solution found in previous generation. If l = 1, u
[l]
1 is also randomly chosen.

Weighted boosting search initialisation: Assign initial distribution weightings δi(0) = 1
PS

, 1 ≤ i ≤ PS , for population. Then

1. For 1 ≤ i ≤ PS , generate g
i)
n from u

[l]
i

, candidates for nth model column, and orthogonalise them:

α
i)
j,n

= pT
j g

i)
n /pT

j pj, 1 ≤ j < n, p
i)
n = g

i)
n −

n−1∑
j=1

α
i)
j,n

pj, θ
i)
n =

(
p
i)
n

)T
y/

((
p
i)
n

)T
p
i)
n + λ

)
(1)

2. For 1 ≤ i ≤ PS , calculate LOO cost function value of each u
[l]
i

:

e
(n)
k

(i) = e
(n−1)
k

− p
i)
n (k)θ

i)
n , η

(n)
k

(i) = η
(n−1)
k

−
(

p
i)
n (k)

)2
/

((
p
i)
n

)T
p
i)
n + λ

)
, 1 ≤ k ≤ N (2)

J
i)
n =

1

N

N∑
k=1

(
e
(n)
k

(i)/η
(n)
k

(i)

)2
(3)

where p
i)
n (k) is kth element of p

i)
n .
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Inner loop: weighted boosting search t = 0; t = t + 1

Step 1: Boosting
1. Find

ibest = arg min
1≤i≤PS

J
i)
n and iworst = arg max

1≤i≤PS
J

i)
n

Denote u
[l]
best

= u
[l]
ibest

and u
[l]
worst = u

[l]
iworst

.

2. Normalise the cost function values

J̄
i)
n =

J
i)
n∑PS

m=1 J
m)
n

, 1 ≤ i ≤ PS

3. Compute a weighting factor βt according to

ξt =

PS∑
i=1

δi(t− 1)J̄
i)
n , βt =

ξt
1− ξt

4. Update distribution weightings for 1 ≤ i ≤ PS and then normalise them

δi(t) =


δi(t− 1)β

J̄
i)
n

t , for βt ≤ 1

δi(t− 1)β
1−J̄

i)
n

t , for βt > 1

δi(t) =
δi(t)∑PS

m=1 δm(t)

Step 2: Parameter updating
1. Construct (PS + 1)th and (PS + 2)th points using

uPS+1 =

PS∑
i=1

δi(t)u
[l]
i

uPS+2 = u
[l]
best

+

(
u
[l]
best

− uPS+1

)
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2. Calculate g
PS+1)
n and g

PS+2)
n from uPS+1 and uPS+2, orthogonalise these two candidate model columns (as in (1)), and

compute their corresponding LOO cost function values J
i)
n , i = PS + 1, PS + 2 (as in (2) and (3)). Then find

i∗ = arg min
i=PS+1,PS+2

J
i)
n

The pair (ui∗, J
i∗)
n ) then replaces (u

[l]
worst, J

iworst)
n ) in population

If ‖uPS+1 − uPS+2‖ < ξB , exit inner loop.

End of inner loop

Solution found in lth generation is u = u
[l]
best

.

End of outer loop

This yields:

solution u = u
[NG]
best

, i.e. µn and Σn of nth RBF node

nth model column gn

orthogonalisation coefficients αj,n, 1 ≤ j < n

corresponding orthogonal model column pn and weight θn

n-term modelling errors e
(n)
k

and associated LOO modelling error weightings η
(n)
k

for 1 ≤ k ≤ N
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Engine Data Modelling

© Modelling relationship between fuel rack position (input uk) and engine speed (output yk) for

a Leyland TL11 turbocharged, direct injection diesel engine operated at low engine speed

© Data set contains 410 pairs of input-output samples (uk, yk), modelled as yk = fs(xk) + ek

with xk = [yk−1 uk−1 uk−2]
T , first 210 data points for training and last 200 points for testing
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© LOO mean square error as function of model size for engine data set
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© OFS-LOO constructed 17 RBF nodes, LROLS-LOO then reduced model to 15 nodes

© Results were compared with those obtained by SVM and LROLS-LOO
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© Comparison of SVM, LROLS-LOO and OFS-LOO algorithms for engine data set

algorithm RBF type model size MSE over training set MSE over test set

SVM fixed Gaussian 92 0.000447 0.000498

LROLS-LOO fixed Gaussian 22 0.000453 0.000490

OFS-LOO tunable Gaussian 15 0.000466 0.000480

© Model output ŷk and error ek = yk − ŷk of 15-node RBF network for engine data set
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Gas Furnace Data Modelling

© Modelling relationship between coded input gas feed rate (input uk) and CO2 concentration

(output yk) for a gas furnace data set

© Data set contains 296 pairs of input-output samples (uk, yk), modelled as yk = fs(xk) + ek

with xk = [yk−1 yk−2 yk−3 uk−1 uk−2 uk−3]
T , all the data points were used for training
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© LOO mean square error as function of model size for gas furnace data set
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© OFS-LOO constructed 16 RBF nodes, LROLS-LOO then reduced model to 15 nodes

© Results were compared with those obtained by SVM and LROLS-LOO
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© Comparison of SVM, LROLS-LOO and OFS-LOO algorithms for gas furnace data set

algorithm RBF type model size training MSE LOO MSE

SVM fixed Gaussian 62 0.052416 0.054376

LROLS-LOO fixed thin-plate-spline 28 0.053306 0.053685

OFS-LOO tunable Gaussian 15 0.054306 0.054306

© Model output ŷk and error ek = yk − ŷk of 15-node RBF network for gas furnace data set
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Boston Housing Data Modelling

© Boston Housing: http://www.ics.uci.edu/∼mlearn/MLRepository.html

Data set comprises 506 data points with 14 variables

Predicting median house value from remaining 13 attributes

© Modelling: randomly selected 456 data points from data set for training and used remaining 50

data points to form test set

Average results were given over 100 repetitions

© Comparison of SVM, LROLS-LOO and OFS-LOO algorithms for Boston Housing data set

algorithm RBF type model size training MSE test MSE

SVM fixed Gaussian 243.2± 5.3 6.7986± 0.4444 23.1750± 9.0459

LROLS-LOO fixed Gaussian 58.6± 11.3 12.9690± 2.6628 17.4157± 4.6670

OFS-LOO tunable Gaussian 34.6± 8.4 10.0997± 3.4047 14.0745± 3.6178
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Conclusions

• A novel construction algorithm has been proposed for regression modelling using
the radial basis function network with tunable nodes

• Proposed algorithm has ability to tune centre and covariance matrix of individual
radial basis function node to minimise leave-one-out mean square error

• A global search algorithm, referred to as RWBS, has been adopted to construct
radial basis function nodes in an orthogonal forward selection procedure

• Model construction procedure is fully automatic and user does not need to
specify any learning algorithmic parameter

• The proposed OFS-LOO approach offers enhanced modelling capability with
very small radial basis function network models
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