ICIC 2006 Presentation

Fast Kernel Classifier Construction Using Orthogonal Forward Selection to Minimise Leave-One-Out Misclassification Rate

X. Hong^{\ddagger}, S. Chen^{\dagger} and C.J. Harris^{\dagger}

[‡] Department of Cybernetics, University of Reading, RG6 6AY, UK

[†] School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK

- □ The proposed fast sparse kernel classifier construction method
- Experimental investigation of the proposed method and comparison with some existing techniques

- □ Nonlinear optimisation approach: Optimise all parameters (kernel centre vectors, variances or covariance matrices, and weights)
 - \checkmark Very "sparse" (small size)
 - \clubsuit All problems associated with nonlinear optimisation
- □ Linear optimisation approach: Fix centres to training input data, and seek a "linear" subset model
 - O Orthogonal least squares forward selection
 - \clubsuit Sparse, good performance, and efficient construction
 - \checkmark Need to specify kernel variance (via cross validation)
 - **O** Kernel modelling methods
 - \checkmark Sparse (though not as sparse as OLS), good performance
 - \therefore Need to specify kernel variance and other kernel hyperparameters (via costly cross validation)

Motivations

- \Box How good a kernel classifier method:
 - \checkmark Generalisation performance
 - \Rightarrow Sparsity level or classifier's size
 - \checkmark Efficiency of classifier construction process
- $\hfill\square$ Adopt OLS forward selection approach with improvements:
 - $\checkmark\,$ Select kernels by directly optimising generalisation capability,
 - i.e. use leave-one-out misclassification rate to select kernels
 - \checkmark This further enhances sparsity of resulting kernel classifier
 - \checkmark and yet keeps efficiency of OLS construction process

 $\Box \text{ Consider constructing two-class kernel classifier } f(\mathbf{x}) : \Re^n \to \{1, -1\}$

$$\hat{y}(i) = \operatorname{sgn}(f(i))$$
 with $f(i) = \sum_{j=1}^{L} \theta_j p_j(\mathbf{x}(i))$

with training set $D_N = {\mathbf{x}(i), y(i)}_{i=1}^N$, where $y(i) \in {1, -1}$ is class label for $\mathbf{x}(i)$, $\hat{y}(i)$ estimated class label, and $p_j(\bullet)$ classifier's kernel

 \Box Use each data $\mathbf{x}(i)$ as kernel centre, i.e. L = N, and define residual $\xi(i) = y(i) - f(i)$. Then kernel model over D_N can be expressed as

$$\mathbf{y} = \mathbf{P} \boldsymbol{\theta} + \boldsymbol{\Xi}$$

where $\boldsymbol{\Xi} = [\xi(1) \ \xi(2) \cdots \xi(N)]^T$, and $\boldsymbol{\theta} = [\theta_1 \ \theta_2 \cdots \theta_L]^T$

 $\square \mathbf{P} = [\mathbf{p}_1 \ \mathbf{p}_2 \cdots \mathbf{p}_L] \text{ is regression matrix with column } \mathbf{p}_j = [p_j(\mathbf{x}(1)) \ p_j(\mathbf{x}(2)) \cdots p_j(\mathbf{x}(N))]^T \text{ and row } \mathbf{p}^T(i) = [p_1(i) \ p_2(i) \cdots p_L(i)]$

□ Let orthogonal decomposition $\mathbf{P} = \mathbf{W}\mathbf{A}$, where $\mathbf{A} = \{a_{ij}\}$ is $L \times L$ unit upper triangular matrix and \mathbf{W} is $N \times L$ orthogonal matrix

$$\mathbf{W}^T \mathbf{W} = \text{diag}\{\kappa_1, \kappa_2, \cdots, \kappa_L\} \text{ with } \kappa_j = \mathbf{w}_j^T \mathbf{w}_j$$

□ Let \mathbf{w}_j be *j*th column and $\mathbf{w}^T(i) = [w_1(i) \ w_2(i) \cdots w_L(i)]$ *i*th row of **W**. Then kernel model can alternatively be expressed as

$$\mathbf{y} = \mathbf{W} \boldsymbol{\gamma} + \boldsymbol{\Xi}$$

in which $\boldsymbol{\gamma} = [\gamma_1 \ \gamma_2 \cdots \gamma_L]^T = \mathbf{A}\boldsymbol{\theta}$

 $\hfill\square$ Regularised OLS parameter estimate is

$$\gamma_j = \frac{\mathbf{w}_j^T \mathbf{y}}{\kappa_j + \lambda_j}$$

where λ_j is small positive regularisation parameter

ICIC 2006

□ Define signed decision variable g(i) = y(i)f(i). Then misclassification rate over D_N is computed by

$$\frac{1}{N} \sum_{i=1}^{N} \operatorname{Id}[g(i)] \quad \text{where} \quad \operatorname{Id}[v] = \begin{cases} 1, & v \le 0\\ 0, & v > 0 \end{cases}$$

□ Let $f_k^{(-i)}(\bullet)$ be k-term kernel classifier identified using D_N but with its *i*th data point being removed. Test output of this *k*-term classifier at *i*th data point not used in training is $f_k^{(-i)}(i)$

□ Leave-one-out signed decision variable is defined $g_k^{(-i)}(i) = y(i)f_k^{(-i)}(i)$, and leave-one-out misclassification rate is computed by

$$J_k = \frac{1}{N} \sum_{i=1}^{N} \operatorname{Id}[g_k^{(-i)}(i)]$$

- \Box Leave-one-out misclassification rate J_k is a measure of the classifier's generalisation capability
- \Box J_k can be computed efficiently, as leave-one-out signed decision variable

$$g_k^{(-i)}(i) = y(i)f_k^{(-i)}(i) = \frac{\alpha_k(i)}{\beta_k(i)}$$

can be computed recursively

$$\alpha_k(i) = \alpha_{k-1}(i) + \gamma_k w_k(i) y(i) - \frac{w_k^2(i)}{\kappa_k + \lambda_j}$$

$$\beta_k(i) = \beta_{k-1}(i) - \frac{w_k^2(i)}{\kappa_k + \lambda_j}$$

where $w_k(i)$ is *i*th element of \mathbf{w}_k

 \Box Proposed algorithm selects kernels one by one by minimising J_k

Proposed Algorithm

- 1. Initialise $\alpha_0(i) = 0$ and $\beta_0(i) = 1$ for $1 \le i \le N$
- 2. At kth step where $k \ge 1$, for $1 \le l \le L$, $l \ne l_1, \dots, l \ne l_{k-1}$, compute

$$a_{jk}^{(l)} = \begin{cases} \frac{\mathbf{w}_{j}^{T} \mathbf{p}_{l}}{\mathbf{w}_{j}^{T} \mathbf{w}_{j}}, & 1 \le j < k, \\ 1, & j = k, \end{cases} \quad \mathbf{w}_{k}^{(l)} = \begin{cases} \mathbf{p}_{l}, & k = 1, \\ \mathbf{p}_{l} - \sum_{j=1}^{k-1} a_{jk}^{(l)} \mathbf{w}_{j}, & k \ge 2, \end{cases} \quad \gamma_{k}^{(l)} = \frac{(\mathbf{w}_{k}^{(l)})^{T} \mathbf{y}}{\kappa_{k}^{(l)} + \lambda},$$

$$\alpha_{k}^{(l)}(i) = \alpha_{k-1}(i) + \gamma_{k}^{(l)} w_{k}^{(l)}(i) y(i) - \frac{[w_{k}^{(l)}(i)]^{2}}{\kappa_{k}^{(l)} + \lambda}, \quad \beta_{k}^{(l)}(i) = \beta_{k-1}(i) - \frac{[w_{k}^{(l)}(i)]^{2}}{\kappa_{k}^{(l)} + \lambda}, \quad g_{k}^{(-i,l)}(i) = \frac{\alpha_{k}^{(l)}(i)}{\beta_{k}^{(l)}(i)},$$

for
$$1 \le i \le N$$
, and

$$J_k^{(l)} = \frac{1}{N} \sum_{i=1}^N \operatorname{Id}[g_k^{(-i,l)}(i)].$$

Find

$$l_k = \arg[\min\{J_k^{(l)}, 1 \le l \le L, l \ne l_1, \cdots, l \ne l_{k-1}\}]$$

and select $J_k = J_k^{(l_k)}$, $a_{jk} = a_{jk}^{(l_k)}$ for $1 \le j \le k$, $\alpha_k(i) = \alpha_k^{(l_k)}(i)$ and $\beta_k(i) = \beta_k^{(l_k)}(i)$ for $1 \le i \le N$, and

$$\mathbf{w}_{k} = \mathbf{w}_{k}^{(l_{k})} = \begin{cases} \mathbf{p}_{l_{k}}, & k = 1, \\ \mathbf{p}_{l_{k}} - \sum_{j=1}^{k-1} a_{jk} \mathbf{w}_{j}, & k \ge 2. \end{cases}$$

3. Procedure is terminated when $J_k \ge J_{k-1}$. Otherwise, set k = k + 1, and go to step 2

Average classification test error rate in % over 100 realizations

	Misclassification rate	Model Size
RBF	27.6 ± 4.7	5
Adaboost with RBF	30.4 ± 4.7	5
$AdaBoost_{Reg}$	26.5 ± 4.5	5
LP_{Reg} -AdaBoost	26.8 ± 6.1	5
QP_{Reg} -AdaBoost	25.9 ± 4.6	5
SVM with RBF kernel	26.0 ± 4.7	not available
Proposed	25.74 ± 5	6 ± 2

Data and first 6 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

Diabetis Data Set

Average classification test error rate in % over 100 realizations

	Misclassification rate	Model Size
RBF	24.3 ± 1.9	15
Adaboost with RBF	26.5 ± 2.3	15
$AdaBoost_{Reg}$	23.8 ± 1.8	15
LP_{Reg} -AdaBoost	24.1 ± 1.9	15
QP_{Reg} -AdaBoost	25.4 ± 2.2	15
SVM with RBF kernel	23.5 ± 1.7	not available
Proposed	23.0 ± 1.7	6 ± 1

Data and first 6 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

Average classification test error rate in % over 100 realizations

	Misclassification rate	Model Size
RBF	17.6 ± 3.3	4
Adaboost with RBF	20.3 ± 3.4	4
$AdaBoost_{Reg}$	16.5 ± 3.5	4
LP_{Reg} -AdaBoost	17.5 ± 3.5	4
QP_{Reg} -AdaBoost	17.2 ± 3.4	4
SVM with RBF kernel	16.0 ± 3.3	not available
Proposed	15.8 ± 3.7	10 ± 3

Data and first 6 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

- □ A novel construction algorithm has been proposed for kernel classifiers
 - \clubsuit Kernels are selected in a computationally efficient orthogonal forward selection procedure
 - ☆ Kernels are selected by minimising leave-one-out misclassification rate, a measure of generalisation capability
- □ Several examples have shown that proposed method compares favourably with existing state-of-the-art

THANK YOU.

S. Chen wish to thank the support of the United Kingdom Royal Academy of Engineering

