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Abstract. Using the classical Parzen window (PW) estimate as the tar-
get function, the sparse kernel density estimator is constructed in a for-
ward constrained regression manner. The leave-one-out (LOO) test score
is used for kernel selection. The jackknife parameter estimator subject
to positivity constraint check is used for the parameter estimation of a
single parameter at each forward step. As such the proposed approach is
simple to implement and the associated computational cost is very low.
An illustrative example is employed to demonstrate that the proposed
approach is effective in constructing sparse kernel density estimators with
comparable accuracy to that of the classical Parzen window estimate.
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1 Introduction

A basic problem that is pertinent to many machine learning and pattern recog-
nition applications is to estimate the probability density function (pdf) from
observed data samples [1–4]. A general and powerful approach to the problem
of probability density function estimation is the finite mixture model [5]. The
finite mixture model includes the well known PW estimate [4] as a special case.

It is useful to develop methods of fitting a finite mixture model with the
capability to infer a minimal number of mixtures from the data efficiently. Re-
searches into sparse density estimators include the support vector machines[6,
7], the reduced set density estimator (RSDE) [8], and sparse pdf estimator using
forward orthogonal regression (OFR) [9–11].

In this paper a new algorithm for sparse kernel density estimator is intro-
duced, using the classical Parzen window estimate as the target function, and the
kernels as regressors. The proposed sparse kernel density estimator construction
using forward constrained regression algorithm (FCR-SDC) is based on the for-
ward constrained regression [12] in which mixing weights are estimated through
a set of parameters, each of which relates to the model at the current regression
stage and a new candidate term. In each forward stage, the model term selection
is based on the criterion of a minimal leave-one-out (LOO) test score, subject
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to a simple positivity constraint. A one parameter jackknife parameter estima-
tor is utilized in each regression step, subject to the same positivity constraint
check. The proposed algorithm has the advantage of maximal computationally
efficiency due to that (i) the parameter estimation is reduced to the solution of
the minimal possible number of one parameter; and (ii) the positivity constraint
on the mixing weights can be easily accommodated.

2 The Kernel Density Estimator

Given a finite data set consisting of N data samples, D = {x1, ...,xj , ...xN},
where the feature vector variable xj ∈ <m follows an unknown probability den-
sity function p(x), the problem under study is to find a sparse approximation of
p(x) based on D.

A general kernel based density estimate of p(x) is given by

p̂(x;g, σ) =
∑N

j=1 gjK(x,xj) (1)

subject to gj ≥ 0, j = 1, ..., N, gT 1 = 1.

where g = [g1, g2, ..., gN ]T . gj ’s are the kernels weights. 1 is a vector with an
appropriate dimension and all elements as ones. K(x,xj) is a chosen kernel
function with kernel width σ. In this study,

K(x,xj) =
1

(2πσ2)m/2
exp

(

−
‖x − xj‖

2

2σ2

)

(2)

is used. Let the well known Parzen window estimator be denoted by p̂(x;gPar, σPar),
where gPar = [gPar

1 , ..., gPar
N ]T , gPar

j = 1
N , ∀j. Clearly the Parzen window esti-

mator is a special case of (1).
The log-likelihood for g can be formed using observed data D as

log L =
1

N

N
∑

i=1

log p̂(xi;g, σ) =
1

N

N
∑

i=1

log





N
∑

j=1

gjK(xi,xj)



 (3)

Note that by the law of large numbers the log-likelihood of (3) tends to

∫

<m

p(x) log p̂(x;g, σ)dx (4)

as N → ∞ with probability one. (4) is simply the negative cross-entropy or
divergence between the true density p(x) and the estimate p̂(x;g, σ). It can be
shown that for a given kernel width σ = σPar, the Parzen window estimator
gPar

j = 1
N , ∀j can be obtained as an optimal estimator via the maximization of

(3) with respective to g subject to the constraints gj ≥ 0, j = 1, ..., N , gT 1 = 1.
Clearly for the PW estimator, the associated computational cost for evaluating a
point probability density estimate scales directly with the sample size N . Hence
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it is desirable to devise a spare representation of p̂(x;g, σ), in which the terms
are composed of a small subset of data samples.

In the proposed proposed sparse kernel density estimator algorithm the PW
estimator is initially constructed and used as the target function [11]. Specifically
we can write a regression equation [11] linking p̂(x;g, σ) and p̂(x;gPar, σPar) as

p̂(x;gPar, σPar) = p̂(x;g, σ) + ε(x)

=

N
∑

j=1

gjK(x,xj) + ε(x) (5)

where ε(x) is the modelling error at x between the sparse kernel density estimator
p̂(x;g, σ) and the PW density estimator p̂(x;gPar, σPar) constructed based on
D. The aims are to obtain gj that minimize some modelling error criterion,
e.g. E[ε2(x)], and simultaneously to achieve a sparse representation of p̂(x;g, σ)
(with most elements in g being zeros in (5)) subject to the constraints gj ≥ 0,
j = 1, ..., N , gT 1 = 1.

3 The Sparse Kernel Density Estimator Construction

Algorithm using Forward Constrained Regression

The proposed sparse kernel density estimator is based on the general idea of the
mixtures of experts network (MEN) [13] and forward constraint regression[12]
described below.

3.1 The Mixtures of Experts Network and the Forward Constraint
Regression Algorithm

The mixture of experts network [13], as depicted in Figure 1, can be viewed as a
set of linear-in-the-parameter models with convex constraints on the combination
parameters through

ŷ(x) =

M
∑

j=1

gj ŷj(x) (6)

where gj ≥ 0,
∑M

j=1 gj = 1, ŷj(x), j = 1, · · · ,M are the output of each expert,
and ŷ(x) is the composite output of the MEN.

Suppose that M experts ŷj(x) are ordered in a sequence labelled by j, j =
1, 2, ...,M , and the MEN is constructed sequentially. Let a superscript (k) denote
the kth forward step. At the kth forward step, the system is constructed using
the first k experts, such that the MEN system at the kth step is

ŷ(k)(x) =

k
∑

j=1

g
(k)
j ŷj(x) (7)
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Fig. 1. The mixture of experts network

where g
(k)
j ’s are the combination coefficients at the kth step, with g

(k)
j ≥ 0,

∑k
j=1 g

(k)
j = 1, for k = 2, ...,M . The MEN system can be constructed using a

FCR procedure described below [12]:
(i) At the first step, the MEN system is the first expert.

ŷ(1)(x) = ŷ1(x) (8)

This means that g
(1)
1 = 1.

(ii) At the kth step, k = 2, · · · ,M , the MEN system is constructed by in-
cluding the kth expert into the MEN as

ŷ(k)(x) = λk−1ŷ
(k−1)(x) + (1 − λk−1)ŷk(x) (9)

where 0 ≤ λk−1 ≤ 1, ∀k.
It can be shown [12] that the system constructed using the FCR procedure

satisfies the convex constraints condition for weights; g
(k)
j ≥ 0,

∑k
j=1 g

(k)
j = 1,

for k = 2, ...,M .

3.2 The Forward Constrained Regression Algorithm for Sparse
Kernel Density Estimation

Suppose that a sparse kernel density estimator is based on the kernels formed
from Ds = [x′

1, ...,x
′
s], a subset of s data samples selected from D. That is, if
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x6 is selected to form the first kernel, this is denoted as x′
1. The sparse kernel

density estimator p̂(x;g, σ) in (5) can be regarded as a MEN system with the
kernel functions K(x,x′

j) as the experts ŷj(x). The kernel functions K(x,xj)
with nonzero gj ’s are included into the model in a forward manner. At the kth
forward step, the intermediate kernel density estimator p̂(k)(x;g(k), σ) can then
be denoted by ŷ(k)(x) as

ŷ(k)(x) =

k
∑

j=1

g
(k)
j K(x,x′

j) (10)

where g
(k)
j , j = 1, ..., k are the kernels weights at the kth forward step.

Initialization The initialization of the MEN system is to determine the first
expert by selecting the first kernel K(x,x′

1), so that

ŷ(1)(x) = K(x,x′
1) (11)

and g
(1)
1 = 1. From (5) and (11)

p̂(x;gPar, σPar) = K(x,x′
1) + ε(x) (12)

From N kernels K(x,xj), j = 1, ...N , one is to be determined as K(x,x′
1). This

is simply done by searching for the term that produces the smallest value of
mean squares modelling errors over D, i.e.

j1 = arg min{

N
∑

i=1

[p̂(xi;g
Par, σPar) − K(xi,xj)]

2,∀j} (13)

and xj1 is then set as x′
1.

Kernel selection using leave-one-out (LOO) test score and the jack-
knife parameter estimator Now consider the model term selection for forward
step k ≥ 2. (9) can be rewritten as

ŷ(k)(x) = λk−1ŷ
(k−1)(x) + (1 − λk−1)K(x,x′

k) (14)

The right hand side of (14) is a convex combination of two terms, the current
MEN system ŷ(k−1)(x) and the kth kernel K(x,x′

k) to be included into the
model at the kth forward step. The following proposed algorithm aims to resolve
two problems simultaneously; (i) which kernel is to be selected as K(x,x′

k) from
(N−k+1) candidate kernels and (ii) what type of parameter estimator is adopted
for λk−1.

From (5) and (14) we have

p̂(x;gPar, σPar) =

k
∑

j=1

g
(k)
j K(x,x′

j) + ε(x)

= λk−1ŷ
(k−1)(x) + (1 − λk−1)K(x,x′

k) + ε(x) (15)
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With N data samples, define p̂Par = [p̂(x1;g
Par, σPar), ..., p̂(xN ;gPar, σPar)]T ,

ŷ(k−1) = [ŷ(k−1)(x1), ..., ŷ(k−1)(xN )]T , ψ = [K(x1,x
′
k), ...,K(xN ,x′

k)]T and
ε = [ε(x1), ..., ε(xN )]T . Then (15) can be rewritten in the vector form as

p̂Par = λk−1ŷ
(k−1) + (1 − λk−1)ψ + ε (16)

or

t = λk−1w + ε (17)

with t = [t1, ..., tN ]T = p̂Par −ψ, w = [w1, ..., wN ]T = ŷ(k−1) −ψ.
Minimizing the loss function J = εTε with respect to λk−1 to yield the least

squares solution

λLS
k−1 =

wT t

wT w

=
bk−1

ak−1
(18)

where bk−1 = wT t and ak−1 = wT w.
The kth step of the MEN system involves the selection of K(x,x′

k). Note
that by using each of the (N − k + 1) candidate kernels to form ψ in turn, (18)
is repeated calculated. For some candidate kernels, the solution may not satisfy
the constraints 0 ≤ λLS

k−1 ≤ 1. These kernels will then not be considered to be
appropriate.

For all model terms which satisfy the constraints 0 ≤ λLS
k−1 ≤ 1, the following

proposed model term selection algorithm is applied, which combines the leave-
one-out cross validation with the jackknife parameter estimator for λk−1 (given
by (21) below), subject to 0 ≤ λk−1 ≤ 1.

The leave-one-out cross validation involves the removal of each xj in turn
from the estimation data set D, j = 1, ..., N . The removed data point is used as
a test point for the model constructed using the modified data set. It is easy to
verify that the least squares solution using (D \ xj), is given by

λ
(−j)
k−1 =

bk−1 − wjtj

ak−1 − w2
j

, j = 1, ..., N (19)

and the mean squares of LOO errors ε(−j)(xj) is given by

Jk = E{[ε(−j)(xj)]
2} =

1

N

N
∑

j=1

(

tj − λ
(−j)
k−1 wj

)2

(20)

It is known that the jackknife parameter estimator is able to improve the
accuracy of parameter estimation [14, 15]. The jackknife parameter estimator
for λk−1 given by

λk−1 = λLS
k−1 −

N − 1

N

N
∑

j=1

λ
(−j)
k−1 (21)
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is employed for parameter estimation. Although in general the jackknife param-
eter estimator is regarded as computationally intensive, the additional computa-
tion is minimal in the proposed algorithm. This is because in the FCR procedure,

only a minimal number of one parameter λ
(−j)
k−1 , (j = 1, ..., N) is involved for each

candidate term. In addition, most of the calculation in parameter estimation can
be regarded as the byproducts of the above leave-one-out cross validation pro-
cedure.

For all model terms which satisfy the constraints 0 ≤ λLS
k−1 ≤ 1, (19)-(21)

are repeatedly calculated. Amongst all solutions satisfying the constraints 0 ≤
λk−1 ≤ 1, the data point that produces the smallest Jk is selected as x′

k and
then used to form kernel K(x,x′

k).

The parameters g
(k)
j is readily computed by applying the recursion [12], given

by

g
(k)
j = λk−1g

(k−1)
j , j = 1, ..., k − 1

g
(k)
k = 1 − λk−1 (22)

with g
(1)
1 = 1.

The above procedure iterates for a finite number of forward steps, with k

increases by one each step until the final model achieves a satisfactory modelling
performance. In this work we terminate the procedure when the accuracy of the
sparse kernel density estimator p̂(x;g, σ) is sufficiently close to that of the PW
density estimator p̂(x;gPar, σPar).
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Fig. 2. (a) The true density and (b) its contours for Example 1.
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Fig. 3. (a) The Parzen window probability density estimate and (b) its contour for
Example 1.
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Fig. 4. (a)The proposed FCR-SDC density estimate and (b) its contour for Example
1.
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4 An Illustrative Example

The density to be estimated for this 2-D example was given by the mixture of
two densities of a Gaussian and a Laplacian, as defined by

p(x) =
1

4π
exp

(

−
(x1 − 2)2

2

)

exp

(

−
(x2 − 2)2

2

)

+
0.35

8
exp(−0.7|x1 + 2|) exp(−0.5|x2 + 2|) (23)

The true density and its contour are shown in Figure 2. A data set of N = 500
points was randomly drawn from this distribution and used to construct the
probability density function p̂(x;g, σ) using the proposed FCR-SDC approach.
The kernel width of σPar = 0.4 was empirically found and used in the Parzen
window estimate initially, and then the kernel width of σ = 1 was used in the
FCR-SDC algorithm. A separate test data set of Ntest = 10000 points was used
for evaluation according to

L1 =
1

Ntest

Ntest
∑

k=1

|p(xk) − p̂(xk;g, σ)| (24)

The experiment was repeated for 100 different random runs. The results of the
proposed method in comparison with the PW estimate and the SDC [10] are
shown in Table 1. It is shown that the proposed FCR-SDC has comparable
accuracy to that of PW, with an average number of required kernels less that 6%
of the data samples. In term of model sparsity and accuracy the best performance
is that of SDC [10]. The typical Parzen window estimate and the FCR-SDC
estimate were depicted in Figures 3–4.

Table 1. Performance of the three kernel density estimates for Example 1.

Method L1 test error (mean ± STD) Kernel numbers (mean ± STD)

PW (4.20 ± 0.8) × 10−3 500 ± 0

SDC [10] (3.63 ± 0.8) × 10−3 11.9 ± 2.6

proposed FCR-SDC (4.26 ± 0.7) × 10−3 33.6 ± 4.7

5 Conclusions

A simple and efficient algorithm has been introduced to construct a kernel model
representation using a much smaller number of kernels than the training data
set. An illustrative example is used to demonstrate that the models from the
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proposed algorithm are able to model the probability density function with com-
parable accuracy, but with a much sparser representation than Parzen window
estimate. Hence the proposed algorithm offers as a viable alternative for sparse
probability density function estimation.
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