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How Al is saved

Brief Al history

— Birth of Al and initial hype (1950s - 1970s)

— Al winter (1980s - 1990s)

— Endeavour: We were not calling ourselves Al, but ‘intelligent computing’

— Reborn to new hype, this time is real

Who save Al

— It is often mistaken Al as belonging to Computer Science

— Electronic and digital revolution, mobile communication revolution lead to
connected digital world, providing solid foundation for Al to recover

My Al equation

Al = ey - C?

— ¢4 is Electronic Digital infrastructure; C' is Communication, C' is Computing
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Motivations

Most real-world systems and data are nonlinear and nonstationary

Standard machine learning of collecting training data, identifying a model, and
hoping it generalizes well does not work

Key to success is to update learner’s structure and model parameters online as
new data are available

Modeling over drifting data stream: well known stability and plasticity dilemma
or tradeoff

— Stability: ability to retain acquired knowledge for maintaining diversity

— Plasticity: ability to forget part or all past knowledge in order to capture new
knowledge as fast as possible
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Existing Techniques

e Resource allocating network: RAN adds RBF nodes with arriving data based on
their significance

— Growing model size, end with very large model and high prediction complexity

e Online sequential extreme learning machine (OS-ELM) and ensemble OS-ELM
(EOS-ELM):

— Fixed large model size, only update parameters, no structure adaptation

e Fast tunable RBF: Chen, Gong, Hong, Chen, “A fast adaptive tunable RBF network
for nonstationary systems,” IEEE Trans. Cybernetics, 46(12), 2683-2692, 2016

— Replace an insignificant RBF node with new data and update parameters online
(Fixed small model size, update both structure and parameters)

— Better prediction accuracy and lower online computational complexity than RAN,
OS-ELM, EOS-ELM, and other existing methods
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Proposed GAP-SER

e Nonlinear and nonstationary data space partitioned with moving window as local
states, each fitted with local linear model, yielding local model set {f;}/,

e Growing and pruning selective ensemble regression:

— Online prediction model is constructed as selective ensemble from {f;}/,

— Growing strategy: newly emerging process state is automatically identified and
fitted with a local linear model

— Pruning strategy: remove unwanted out of date local linear models

e Excellent stability (diversity) and plasticity properties

— Superior online prediction accuracy and low computational complexity

® Liu, Chen, Liang, Harris, “Growing and pruning selective ensemble regression for nonlinear

and nonstationary systems,” submitted for publication
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Selective Ensemble Construction

p: SER bandwidth

[
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e At sample t,,, SER constructs prediction ¥(t,) of y(¢,) by selecting M best local
linear models {f; }*_, from local model set {f;}{-, using

— p available samples {x(t, —d — 1), y(tp — d — z)}f:_ol where input x(t) € R,

output y(t) € R, y(t, — d) is newest output sample available, and d > 1

e Standard probability metric is used for SER predictor construction
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Growing Local Model Set

e At next sample ¢, = t, — d + 1, when

o2l initial shifted
oqg| Window  window observation y(t,) is available, move
g 0.1 X growing window one sample ahead
0.05} . . .
ol growing window size

W,
366 260 }4 G >{

coiltien;eijh(i)ic;ng i y(tn —V\é +1) e y(tn)i
s X (VB +1) e X(tn)! T

-0.05

7 -test & t-test:
Ry, differs from Ry
significantly?

build a new local model frey e Grow local linear model set when new
. process state is identified
redundancy check by

P -test & t-test

Shao, Tian, Wang, Deng, Chen, “Online soft sensor design using

_ local partial least squares models with adaptive process state
discard redundant

model partition,” Chemometrics and Intelligent Laboratory Systems,

144, 108-121, 2015

extract next local model region
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Pruning Local Model Set

e Over long online operation, local model set {f;}{~, may grow to be very large,
dramatically increasing online computational complexity of SER prediction

e Highly desired to remove out-of-date unwanted local models

— Any local linear model in model set represents some past system knowledge
actually occurred

— Remove a local model not selected by current SER always runs risk it may be
needed in future

— How to remove ‘unwanted’ local model online without sacrificing diversity and
accuracy of SER 7

e Our pruning strategy: pruning window size
W,
— Over Wp consecutive samples, only if a | P -
local model has never been selected by SER

i t.— +71) ++s t )
predictor, it is removed from local model set  --- )>(/((trr]1—\\//\\2 _,_1)) 2/(((,[:)) >
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Algorithmic Parameters

e Growing window size W:

— Small W¢ leads to large number of local models, increasing online operating
time but having better adaptation capability, large W has opposite efforts

e Pruning window size Wp: conveniently set to Wp = Wg

— If a model is not needed consistently for current Wp prediction samples,
probability it being selected in near future prediction samples is small

— Remove ‘oldest’ or current ‘worst’-performance local model may not be right

— To maintain sufficient diversity, pruning will not take place if a minimum size
L in of local model set is reached

e Selective ensemble regression bandwidth p:

— Trade off online complexity and performance — large p imposes high complexity
but better robustness against noise, and small p has opposite efforts
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Experimental Results

e Performance metrics

— Test mean square error, MSE

1 ! 2
MSE(¢ %Z

1=1

— Online computational complexity measured by average computational time per
sample, ACTpS

e Benchmark algorithms for comparison with our GAP-SER

— OS-ELM: initial trained RBF model, online weight adaptation (fixed model size)

— EOS-ELM: initial trained ensemble of RBF models, online weight adaptation
(fixed model size)

— RAN: initial zero RBF node, online growing model

— RANIni: initial trained RBF model, online growing model

— Fast tunable RBF: initial trained RBF model, online replace worst node (fixed

model size)
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Lorenz Time Series

e Lorzen chaotic time series

'djé’” = a(y(t) —z(t))
< dg; = ca(t) — z(t)z(t) — y(t)
\ O~ 2(t)y(t) — ba(t)

with time-varying parameters:

4+ 3(1 + sin(0.1t))

=10, b=
a : 5

, ¢=25+3(1+ cos (2°9°M))

e 60-steps ahead prediction of y(t) with
T
x(t) = |y(t — 60) y(t — 66) y(t — 72) y(t — 78)]

e Mean and standard deviation (STD) of test MSE and ACTpS over 100
realizations
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Lorenz Series Results
e First 1000 samples for initial training, last 3000 samples for online testing

e 100 random realizations are employed

e Comparison of online prediction and modeling performance (average£STD) for
OS-ELM, EOS-ELM, RAN, RANini, fast tunable RBF, and proposed GAP-SER

Method MSE (dB) (ms) Lo.c.al models/.RBF Nodes | Average |
Initial Final ensemble size

OS-ELM 10.87+0.01 6.21+0.31 500 500 .
10.86+0.01 37.1440.22 1000 1000 .

EOS-ELM 11.01£0.01 58.12+1.45 5 x 500 | 5 x 500 5

RAN 3.83+0.02 0.66+0.01 0 12240 .

RANini 4.21+0.04 1.0240.02 69+0 139.974+0.17 | -

Tunable RBF | -13.48+0.56 | 0.17+0.01 10 10 .

GAP-SER -27.424+0.63 | 0.244+0.01 1310 13.474+0.50 | 9.88+0.07
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(a) Learning curves of average numbers of local linear models (GAP-SER)/RBF nodes
(RAN, RANini)

(b) Learning curves of average test MSEs of OS-ELM, EOS-ELM, RAN, RANini, fast
tunable RBF, and GAP-SER
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Industrial Microwave Heating System

Microwave generator Multimode cavity

Conveyor belt

PLC  Host computer
e Control inputs u(t) = [upl(t) Upy (8) Upg(T) upy(t) ups(2) U(t)]T

— u,(t), 1 <4 < 5: microwave powers for five microwave generators
— v(t): conveyor speed to cavity
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Microwave Heating System

e Three fiber optical sensors, FOS1, FOS2 and FOS3, record multiple-points of
temperature, ys (¢), 1 < j <3

e Accurate predictions of ys () are crucial to detect thermal runaway in advance

e Task is to construct online adaptive predictors of y;.(f), 1 < j < 3:

z//\sj(t) — fnl—ns,j(wj(t);t)a 1 S] < 37

with input vector x;(t) = |ys,(t — 1) u'(t — 1)]T

e For each FOS's dataset, first 1000 samples for initial training and and last 2000
samples for online prediction
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On-line Temperture Prediction Results

Dataset | Method MSE (dB) | ACTpS (ms) Lo.c.al models/.RBF Nodes | Average .
Initial Final ensemble size

OS-ELM 18.4438 0.43 100 100 -
EOS-ELM 6.9665 2.38 5x 100 | 5 x 100 5
RAN 1.4990 0.56 0 48 -

FOS1 RAN:Ini 3.113 1.91 65 103 -
Tunable RBF | -11.6108 0.35 10 10 -
GAP-SER -13.7951 0.20 8 11 4.15
OS-ELM 12.6390 0.44 100 100 -
EOS-ELM 7.7460 2.50 5 X 100 | 5 x 100 5
RAN 4.9071 0.24 0 25 -

FOS?2 RAN:Ini 7.0560 0.98 45 67 -
Tunable RBF | -13.5971 0.38 10 10 -
GAP-SER -14.0198 | 0.27 18 18 8.94
OS-ELM 13.5877 0.43 100 100 -
EOS-ELM 8.1725 2.89 5 x 100 | 5 x 100 5
RAN 3.5136 0.40 0 35 -

FOS3 RANini 3.1695 1.02 48 71 -
Tunable RBF | -13.1200 | 0.34 10 10 -
GAP-SER -13.4187 | 0.22 18 18 4
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e Online temperature prediction of FOS1

(a) Learning curves of numbers of local linear models (GAP-SER)/RBF nodes (RAN,

RANini)

(b) Learning curves of test MSEs of OS-ELM, EOS-ELM, RAN, RANini, fast tunable

RBF, and GAP-SER
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e Online temperature prediction of FOS2

(a) Learning curves of numbers of local linear models (GAP-SER)/RBF nodes (RAN,
RANini)

(b) Learning curves of test MSEs of OS-ELM, EOS-ELM, RAN, RANini, fast tunable
RBF, and GAP-SER
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e Online temperature prediction of FOS3

(a) Learning curves of numbers of local linear models (GAP-SER)/RBF nodes (RAN,

RANini)

(b) Learning curves of test MSEs of OS-ELM, EOS-ELM, RAN, RANini, fast tunable
RBF, and GAP-SER
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EEG Data Modeling

e EEG time series publicly available from the University of Bonn.

— At sampling rate 173.61 Hz, dataset Dy = {z(t),y(t)}, with 10 seconds
length (1730 samples), where x(t) = [y(t — 1) y(t — 2) y(t — 3) y(t — 4)|*

— First 5 seconds (865 data pairs) used for initial training, and rest 5 seconds (865
data pairs) used for testing

e Comparison of online prediction and modeling performance for RAN, RANini, fast
tunable RBF, and proposed GAP-SER

Method MSE (dB) | ACTpS (ms) Lo.c.al mod.els/RBF Nodes | Average |
Initial | Final ensemble size

RAN 24.6432 1.37 0 106 -

RANIni 20.8746 1.81 103 107 -

Tunable RBF | 13.6452 0.41 10 10 -

GAP-SER 3.9840 0.42 2 3 1.97
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(a) Learning curves of test MSEs of RAN, RANini, fast tunable RBF, and GAP-SER

(b) Comparison of recovered signal by GAP-SER and original EEG observations
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Conclusions

e For nonlinear and fast time-varying systems and data, traditional machine
learning relying on training does not work

— Adapt model weights is inadequate
— Crucial to adjust model structure as well as adapt model weights
— Adaptation must be fast, accurate, imposing low online computational time

e Our growing and pruning selective ensemble regression offers state-of-the-art
online modeling/prediction of highly nonlinear and nonstationary data

— Growing strategy automatically identifies newly emerging local linear models
— Pruning strategy reliably removes unwanted out-of-date local models
— Selective ensemble regression adaptively constructs accurate online predictor

e This GAP-SER balances stability and plasticity well, maintains sufficient diversity,
provides highly accurate adaptive modeling while imposing very low online
computational complexity
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