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How AI is saved

• Brief AI history

– Birth of AI and initial hype (1950s - 1970s)
– AI winter (1980s - 1990s)
– Endeavour: We were not calling ourselves AI, but ‘intelligent computing’
– Reborn to new hype, this time is real

• Who save AI

– It is often mistaken AI as belonging to Computer Science
– Electronic and digital revolution, mobile communication revolution lead to

connected digital world, providing solid foundation for AI to recover

• My AI equation
AI = ed · C
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– ed is Electronic Digital infrastructure; C is Communication, C is Computing
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Motivations

• Most real-world systems and data are nonlinear and nonstationary

• Standard machine learning of collecting training data, identifying a model, and
hoping it generalizes well does not work

• Key to success is to update learner’s structure and model parameters online as
new data are available

• Modeling over drifting data stream: well known stability and plasticity dilemma
or tradeoff

– Stability: ability to retain acquired knowledge for maintaining diversity

– Plasticity: ability to forget part or all past knowledge in order to capture new
knowledge as fast as possible
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Existing Techniques

• Resource allocating network: RAN adds RBF nodes with arriving data based on
their significance

– Growing model size, end with very large model and high prediction complexity

• Online sequential extreme learning machine (OS-ELM) and ensemble OS-ELM
(EOS-ELM):

– Fixed large model size, only update parameters, no structure adaptation

• Fast tunable RBF: Chen, Gong, Hong, Chen, “A fast adaptive tunable RBF network

for nonstationary systems,” IEEE Trans. Cybernetics, 46(12), 2683-2692, 2016

– Replace an insignificant RBF node with new data and update parameters online
(Fixed small model size, update both structure and parameters)

– Better prediction accuracy and lower online computational complexity than RAN,
OS-ELM, EOS-ELM, and other existing methods
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Proposed GAP-SER

• Nonlinear and nonstationary data space partitioned with moving window as local
states, each fitted with local linear model, yielding local model set {fl}

L
l=1

• Growing and pruning selective ensemble regression:

– Online prediction model is constructed as selective ensemble from {fl}
L
l=1

– Growing strategy: newly emerging process state is automatically identified and
fitted with a local linear model

– Pruning strategy: remove unwanted out of date local linear models

• Excellent stability (diversity) and plasticity properties

– Superior online prediction accuracy and low computational complexity

• Liu, Chen, Liang, Harris, “Growing and pruning selective ensemble regression for nonlinear

and nonstationary systems,” submitted for publication
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Selective Ensemble Construction
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• At sample tp, SER constructs prediction ŷ(tp) of y(tp) by selecting M best local
linear models {flm}

M
m=1 from local model set {fl}

L
l=1 using

– p available samples
{
x(tp − d − i), y(tp − d − i)

}p−1

i=0
, where input x(t) ∈ R

mo,
output y(t) ∈ R, y(tp − d) is newest output sample available, and d ≥ 1

• Standard probability metric is used for SER predictor construction
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Growing Local Model Set

100 200 300 400
-0.05

0

0.05

0.1

0.15

0.2

time

o
u
tp
u
t

initial

window

shifted

window

Rini Rsft

Y

N

continue shifting 

the window

build a new local model fnew

[Xini, Yini] [Xsft, Ysft]

discard redundant 

model 

Y

N

extract next local model region

redundant

model exists?

redundancy check by

-test  &  t-test
2

 

-test  &  t-test:
2

 

Rsft differs from Rini 

significantly?
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• Grow local linear model set when new
process state is identified

Shao, Tian, Wang, Deng, Chen, “Online soft sensor design using

local partial least squares models with adaptive process state

partition,” Chemometrics and Intelligent Laboratory Systems,

144, 108-121, 2015
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Pruning Local Model Set

• Over long online operation, local model set {fl}
L
l=1 may grow to be very large,

dramatically increasing online computational complexity of SER prediction

• Highly desired to remove out-of-date unwanted local models

– Any local linear model in model set represents some past system knowledge
actually occurred

– Remove a local model not selected by current SER always runs risk it may be
needed in future

– How to remove ‘unwanted’ local model online without sacrificing diversity and
accuracy of SER ?

• Our pruning strategy:

– Over WP consecutive samples, only if a
local model has never been selected by SER
predictor, it is removed from local model set n Py(t  −W  +1)

x n

...

...
y(t  )
x

n

n
...

P

pruning window size

P (t  )

W

(t  −W  +1)
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Algorithmic Parameters

• Growing window size WG:

– Small WG leads to large number of local models, increasing online operating
time but having better adaptation capability, large WG has opposite efforts

• Pruning window size WP : conveniently set to WP = WG

– If a model is not needed consistently for current WP prediction samples,
probability it being selected in near future prediction samples is small

– Remove ‘oldest’ or current ‘worst’-performance local model may not be right
– To maintain sufficient diversity, pruning will not take place if a minimum size

Lmin of local model set is reached

• Selective ensemble regression bandwidth p:

– Trade off online complexity and performance – large p imposes high complexity
but better robustness against noise, and small p has opposite efforts
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Experimental Results

• Performance metrics

– Test mean square error, MSE

MSE(t) =
1

t

t∑

i=1

(
y(i) − ŷ(i)

)2

– Online computational complexity measured by average computational time per
sample, ACTpS

• Benchmark algorithms for comparison with our GAP-SER

– OS-ELM: initial trained RBF model, online weight adaptation (fixed model size)
– EOS-ELM: initial trained ensemble of RBF models, online weight adaptation

(fixed model size)
– RAN: initial zero RBF node, online growing model
– RANini: initial trained RBF model, online growing model
– Fast tunable RBF: initial trained RBF model, online replace worst node (fixed

model size)
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Lorenz Time Series

• Lorzen chaotic time series




d x(t)
d t

= a(y(t) − x(t))
d y(t)
d t

= cx(t) − x(t)z(t) − y(t)
d z(t)
d t

= x(t)y(t) − bz(t)

with time-varying parameters:

a = 10, b =
4 + 3(1 + sin(0.1t))

3
, c = 25 + 3

(
1 + cos

(
20.001t

))

• 60-steps ahead prediction of y(t) with

x(t) =
[
y(t − 60) y(t − 66) y(t − 72) y(t − 78)

]T

• Mean and standard deviation (STD) of test MSE and ACTpS over 100
realizations
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Lorenz Series Results

• First 1000 samples for initial training, last 3000 samples for online testing

• 100 random realizations are employed

• Comparison of online prediction and modeling performance (average±STD) for
OS-ELM, EOS-ELM, RAN, RANini, fast tunable RBF, and proposed GAP-SER

Method MSE (dB) ACTpS (ms)
Local models/RBF Nodes Average

Initial Final ensemble size

OS-ELM
10.87±0.01 6.21±0.31 500 500 -

10.86±0.01 37.14±0.22 1000 1000 -

EOS-ELM 11.01±0.01 58.12±1.45 5 × 500 5 × 500 5

RAN 3.83±0.02 0.66±0.01 0 122±0 -

RANini 4.21±0.04 1.02±0.02 69±0 139.97±0.17 -

Tunable RBF -13.48±0.56 0.17±0.01 10 10 -

GAP-SER -27.42±0.63 0.24±0.01 13±0 13.47±0.50 9.88±0.07
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(a) Learning curves of average numbers of local linear models (GAP-SER)/RBF nodes
(RAN, RANini)

(b) Learning curves of average test MSEs of OS-ELM, EOS-ELM, RAN, RANini, fast
tunable RBF, and GAP-SER
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Industrial Microwave Heating System

Microwave generator

Waveguides

Temperature sensors

Multimode cavity

Conveyor belt

PLC Host computer

• Control inputs u(t) =
[
up1(t) up2(t) up3(t) up4(t) up5(t) v(t)

]T

– upi
(t), 1 ≤ i ≤ 5: microwave powers for five microwave generators

– v(t): conveyor speed to cavity
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Microwave Heating System

• Three fiber optical sensors, FOS1, FOS2 and FOS3, record multiple-points of
temperature, ysj

(t), 1 ≤ j ≤ 3

• Accurate predictions of ysj
(t) are crucial to detect thermal runaway in advance

• Task is to construct online adaptive predictors of ysj
(t), 1 ≤ j ≤ 3:

ŷsj
(t) = fnl−ns,j(xj(t); t), 1 ≤ j ≤ 3,

with input vector xj(t) =
[
ysj

(t − 1) u
T(t − 1)

]T

• For each FOS’s dataset, first 1000 samples for initial training and and last 2000
samples for online prediction
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On-line Temperture Prediction Results

Dataset Method MSE (dB) ACTpS (ms)
Local models/RBF Nodes Average

Initial Final ensemble size

FOS1

OS-ELM 18.4488 0.43 100 100 -

EOS-ELM 6.9665 2.38 5 × 100 5 × 100 5

RAN 1.4990 0.56 0 48 -

RANini 3.113 1.91 65 103 -

Tunable RBF -11.6108 0.35 10 10 -

GAP-SER -13.7951 0.20 8 11 4.15

FOS2

OS-ELM 12.6390 0.44 100 100 -

EOS-ELM 7.7460 2.50 5 × 100 5 × 100 5

RAN 4.9071 0.24 0 25 -

RANini 7.0560 0.98 45 67 -

Tunable RBF -13.5971 0.38 10 10 -

GAP-SER -14.0198 0.27 18 18 8.94

FOS3

OS-ELM 13.5877 0.43 100 100 -

EOS-ELM 8.1725 2.89 5 × 100 5 × 100 5

RAN 3.5136 0.40 0 35 -

RANini 3.1695 1.02 48 71 -

Tunable RBF -13.1200 0.34 10 10 -

GAP-SER -13.4187 0.22 18 18 4
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• Online temperature prediction of FOS1

(a) Learning curves of numbers of local linear models (GAP-SER)/RBF nodes (RAN,
RANini)

(b) Learning curves of test MSEs of OS-ELM, EOS-ELM, RAN, RANini, fast tunable
RBF, and GAP-SER

0 500 1000 1500 2000
Sample (t)

0

20

40

60

80

100

N
um

be
r 

of
 lo

ca
l m

od
el

s 
(n

od
es

)

RAN

RANini

GAP-SER

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Sample (t)

-20

-15

-10

-5

0

5

10

15

20

T
es

t M
S

E
 (

dB
)

Tunable RBF

RAN
RANini

EOS-ELM

GAP-SER

OS-ELM

(a) (b)

17



Next Generation Wireless S Chen

• Online temperature prediction of FOS2

(a) Learning curves of numbers of local linear models (GAP-SER)/RBF nodes (RAN,
RANini)

(b) Learning curves of test MSEs of OS-ELM, EOS-ELM, RAN, RANini, fast tunable
RBF, and GAP-SER
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• Online temperature prediction of FOS3

(a) Learning curves of numbers of local linear models (GAP-SER)/RBF nodes (RAN,
RANini)

(b) Learning curves of test MSEs of OS-ELM, EOS-ELM, RAN, RANini, fast tunable
RBF, and GAP-SER
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EEG Data Modeling

• EEG time series publicly available from the University of Bonn.

– At sampling rate 173.61 Hz, dataset DN = {x(t), y(t)}N
t=1 with 10 seconds

length (1730 samples), where x(t) = [y(t − 1) y(t − 2) y(t − 3) y(t − 4)]T

– First 5 seconds (865 data pairs) used for initial training, and rest 5 seconds (865
data pairs) used for testing

• Comparison of online prediction and modeling performance for RAN, RANini, fast
tunable RBF, and proposed GAP-SER

Method MSE (dB) ACTpS (ms)
Local models/RBF Nodes Average

Initial Final ensemble size

RAN 24.6432 1.37 0 106 -

RANini 20.8746 1.81 103 107 -

Tunable RBF 13.6452 0.41 10 10 -

GAP-SER 3.9840 0.42 2 3 1.97
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(a) Learning curves of test MSEs of RAN, RANini, fast tunable RBF, and GAP-SER

(b) Comparison of recovered signal by GAP-SER and original EEG observations
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Conclusions

• For nonlinear and fast time-varying systems and data, traditional machine
learning relying on training does not work

– Adapt model weights is inadequate
– Crucial to adjust model structure as well as adapt model weights
– Adaptation must be fast, accurate, imposing low online computational time

• Our growing and pruning selective ensemble regression offers state-of-the-art
online modeling/prediction of highly nonlinear and nonstationary data

– Growing strategy automatically identifies newly emerging local linear models
– Pruning strategy reliably removes unwanted out-of-date local models
– Selective ensemble regression adaptively constructs accurate online predictor

• This GAP-SER balances stability and plasticity well, maintains sufficient diversity,
provides highly accurate adaptive modeling while imposing very low online
computational complexity
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