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Motivations

Optimisation methods capable of achieving global optimal solution are effective
tools for solving variety of machine learning and engineering problems

© Genetic algorithms and adaptive simulated annealing generally perform well in
very different problems and have similarly good convergence speeds

GA is population based and evolves solution population according to principles of
the evolution of species in nature

ASA evolves a single solution in parameter space by imitating random behaviour
of molecules during the annealing process

© It is highly desirable to have alternative global search algorithm

Simpler in design, programming effort and tuning - Yet has similar convergence
performance as GA and ASA
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Basic Strategy

© Multistart

• Local optimiser: Finds a (local) optimal solution with given initial point

• Repeat: Re-start local optimiser with some given sampling strategy

© Proposed global search algorithm: Repeated Weighted Boosting Search

• Evolve solution population by performing a convex combination of potential
solutions and replacing worst member with it until process converges

Weightings in convex combination are adapted by “boosting” to reflect
“goodness” of corresponding potential solutions

• The process is repeated a number of generations

Elitist sampling strategy retains best solution found in population initialisation
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Repeated Weighted Boosting Search

Consider task of minimising J(u)

Outer Loop: NG number of generations

Initialisation: keep best solution found in previous generation as u1 and randomly choose rest

of population u2, · · · , uPS

Inner Loop: NI iterations

• Perform a convex combination

uPS+1 =

PS∑
i=1

δiui

• Weightings

δi ≥ 0 and

PS∑
i=1

δi = 1

are adopted (boosting) to reflect goodness of ui

• uPS+1 or its mirror image uPS+2 replaces worst member in population ui, 1 ≤ i ≤ PS

End of Inner Loop
End of Outer Loop
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One-Dimensional Optimisation Example

© Population size PS = 6, number of Inner iterations NI = 20 and number of
generations NG = 12

© 100 random experiments, populations of all 100 runs converge to global
minimum
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IIR Filter Design

© IIR filter with transfer function

HM(z) =

∑L
i=0 aiz

−i

1 +
∑M

i=1 biz−i

used to model unknown plant with
system transfer function HS(z)

Σ
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© Design filter coefficient vector u = [a0 a1 · · · aL b1 · · · bM ]T by minimising

J(u) = E[e
2
(k)] = E[(d(k)− y(k))

2
]

d(k): desired response, y(k): filter’s output, e(k) = d(k)− y(k): error signal

© Time-averaging cost function JN(u) is used in practice

JN(u) =
1

N

N∑
k=1

(d(k)− y(k))
2
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IIR Filter Design - Example One

© System and IIR filter transfer functions are respectively

HS(z) =
0.05− 0.4z−1

1− 1.1314z−1 + 0.25z−2
, HM(z) =

a0

1 + b1z−1

© Convergence performance averaged over 100 experiments: (a) RWBS, and (b) ASA
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© Distribution of solutions (a0, b1) (small circles) obtained in 100 experiments for IIR filter design

Example 1 by RWBS: (a) showing entire search space, and (b) zooming in global minimum, where

large square indicate global minimum and large circle local minimum
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IIR Filter Design - Example Two

© System and IIR filter transfer functions are respectively

HS(z) =
−0.3 + 0.4z−1 − 0.5z−2

1− 1.2z−1 + 0.5z−2 − 0.1z−3
, HM(z) =

a0 + a1z
−1

1 + b1z−1 + b2z−2

© Convergence performance: (a) RWBS averaged over 500 runs, and (b) ASA averaged over 100

runs
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© Distribution of solutions obtained with RWBS in 500 runs for IIR filter design Example 2: (a)

showing (a0, a1) as circles and (κ0, κ1) as crosses, and (b) showing (a0, a1) as circles, (b1, b2)

as squares, and (κ0, κ1) as crosses, κi being reflection coefficients
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Single-Input Multiple-Output Communication System

© For SIMO system employing L receiver antennas: antennas’ output samples are given by

xl(k) =

nc−1∑
i=0

ci,ls(k − i) + nl(k), 1 ≤ l ≤ L

nl(k): complex-valued Gaussian white noise, s(k) ∈ {±1± j}: transmitted QPSK symbols, ci,l:

complex-valued CIR taps associated with lth receive antenna, nc: channel length

© Define the vector of N × L received signal samples, the corresponding transmitted data

sequence and the vector of the SIMO CIRs, respectively,

x = [x1(1) x1(2) · · · x1(N) x2(1) · · · xL(1) xL(2) · · · xL(N)]
T

s = [s(−nc + 2) · · · s(0) s(1) · · · s(N)]
T

c = [c0,1 c1,1 · · · cnc−1,1 c0,2 · · · c0,L c1,L · · · cnc−1,L]
T

Knowing x and s: channel estimation (LS solution), Knowing x and c: data detection (Viterbi

algorithm), Knowing x only: blind joint channel estimation and data detection
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Joint ML Channel Estimation and Data Detection

© PDF of x conditioned on c and s is

p(x|c, s) =
1

(2πσ2
n)

NL
e
− 1

2σ2
n

∑N
k=1

∑L
l=1

∣∣∣xl(k)−
∑nc−1

i=0
ci,ls(k−i)

∣∣∣2

© Joint ML estimate of c and s is solution that maximises p(x|c, s) over c and s jointly or,

equivalently, it is minimum of cost function

JML(ĉ, ŝ) =
1

N

N∑
k=1

L∑
l=1

∣∣∣∣∣xl(k)−
nc−1∑
i=0

ĉi,lŝ(k − i)

∣∣∣∣∣
2

namely

(ĉ∗, ŝ∗) = arg

[
min
ĉ,̂s

JML(ĉ, ŝ)
]

© Joint minimisation can also be solved using an iterative loop first over data sequences ŝ and

then over all the possible channels ĉ

(ĉ∗, ŝ∗) = arg

[
min

ĉ

(
min

ŝ
JML(ĉ, ŝ)

)]
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Iterative Loop for Blind Joint ML Solution

Inner optimisation can readily be carried out using standard Viterbi algorithm

Outer optimisation should be capable of finding a global optimal channel estimate
efficiently and we employ RWBS algorithm

• Outer Optimisation. RWBS searches SIMO channel parameter space to find a
global optimal estimate ĉ∗ by minimising mean square error (MSE)

JMSE(ĉ) = JML(ĉ, s̃
∗
)

• Inner optimisation. Given channel estimate ĉ, Viterbi algorithm provides ML
decoded data sequence s̃∗, and feeds back corresponding value of likelihood
metric JML(ĉ, s̃∗) to upper level.

Other global optimisation search algorithms, such as GA and ASA, can also be
employed for outer optimisation task
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Blind Joint ML SIMO Example

© Simulated SIMO Channel Channel impulse response

1 0.3652-0.2739j 0.7304+0.1825j -0.4402+0.1761j

2 0.2783+0.2376j -0.6362+0.1039j 0.6671-0.0741j

3 -0.6393+0.2494j -0.5169-0.3084j 0.3651+0.1826j

4 -0.1539+0.6928j -0.5389-0.0770j 0.2683-0.3578j

© Bit error rate performance using

maximum likelihood sequence detection for

SIMO channel listed above. Length of data

samples for blind scheme is N = 50
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© Convergence performance using RWBS and GA averaged over 50 runs
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Conclusions

• A guided random search optimisation algorithm has been proposed

– Local optimiser evolves a population of potential solutions by forming a
convex combination of solution population with boosting adaptation

– Repeating loop involving a combined elitist and random sampling initialisation
strategy ensures fast global convergence

• Proposed guided random search method, referred to as RWBS, is remarkably
simple, involving minimum software programming effort and having very few
algorithmic parameters that require tuning

• Versatility of proposed method has been demonstrated using several examples

– It is as efficient as GA and ASA in terms of total number of cost function
evaluations required to attend a global optimal solution
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