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Abstract

An automatic algorithm is derived for constructing kernel density estimates based on a regression approach
that directly optimizes generalization capability. Computational efficiency of the density construction is ensured
using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score.
Local regularization is incorporated into the density construction process to further enforce sparsity. Examples
are included to demonstrate the ability of the proposed algorithm to effectively construct a very sparse kernel
density estimate with comparable accuracy to that of the full sample Parzen window density estimate.

I. INTRODUCTION

Estimation of probability density functions is a recurrent theme in machine learning and
many fields of engineering. A well-known non-parametric density estimation technique is
the classical Parzen window estimate [1], which is remarkably simple and accurate. The
particular problem associated with the Parzen window estimate however is the computa-
tional cost for testing which scales directly with the sample size, as the Parzen window
estimate employs the full data sample set in defining density estimate for subsequent ob-
servation. Recently, the support vector machine (SVM) has been proposed as a promising
tool for sparse kernel density estimation [2],[3].

Motivated by our previous work on sparse data modeling [4],[5], we propose an ef-
ficient algorithm for sparse kernel density estimation using an orthogonal forward re-
gression (OFR) based on leave-one-out (LOO) test score and local regularization. This
construction algorithm is fully automatic and the user does not require to specify any cri-
terion to terminate the density construction procedure. We will refer to this algorithm as
the sparse density construction (SDC) algorithm. Some examples are used to illustrate
the ability of this SDC algorithm to construct efficiently a sparse density estimate with
comparable accuracy to that of the Parzen window estimate.

II. KERNEL DENSITY ESTIMATION AS REGRESSION

Given �������
	���	���� drawn from an unknown density �����
� , where the data samples
�
	���� ����� 	��! "� 	$#�#%#&�!'(� 	�)+*-,/. ' are assumed to be independently identically dis-
tributed, the task is to estimate ���0�
� using the kernel density estimate of the form
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with the constraints
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In this study, the kernel function is assumed to be the Gaussian function of the form
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where � is a common kernel width. The well-known Parzen window estimate [1] is ob-
tained by setting

4 	 � �
 for all � . Our aim is to seek a spare representation for

1�����
� ,
i.e. with most of

4 	 being zero and yet maintaining a comparable test performance or
generalization capability to that of the full sample optimized Parzen window estimate.

Following the approach [2],[3], the kernel density estimation problem is posed as the
following regression modeling problem� ��� ��
 � � 3
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subject to (2), where the empirical distribution function
� ��� ��
 � is defined by� ��� ��
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with ) ��� �$�,+ � 7 ��-��� 7 ��.�� (6)

the “regressor” ! ���87 �
	 � is given by
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with the usual Gaussian

9
-function, and %6�� � denotes the modeling error. Let < �

� 4 � 4  #%#�# 4  ) * ,
� 	 � � �0� 	 �=
 � and > �?� � � � ! 	�� � ! 	��  #%#�#@! 	��  ) * with ! 	�� A �B! ��� 	 7&� A � .

Then the regression model (4) for the data point � 	 , � can be expressed as� 	 � 1� 	 #2%6�?� � �0> * �� �C<:#&%��?� � (8)

Furthermore, the regression model (4) over the training data set � can be written together
in the matrix form D

�BEF<G#&H (9)

with the following additional notations E�� � ! A�� 	 )�, . JI  , with �K.ML�7��N.O
 ,H � � %6�@���P%6�� ��#%#%#=%��
 � ) * , and
D
� � � � �  #�#%# �  ) * . For convenience, we will denote the

regression matrix E � � > � >  #%#�#�>  ) with > 	 � � ! ��� 	 !  %� 	 #%#�#@!  � 	 ) * . > 	 should not be
confused with >(�?� � (the former is the � th column of E , and the latter the � th row of E ).
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Let an orthogonal decomposition of the regression matrix E beE ����� (10)

where
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and � � � � ���  8#%#�#��  ) with columns satisfying � *A � ( �K� , if L����� . The regression
model (9) can alternatively be expressed asD

����� #&H (12)

where the orthogonal weight vector � ��� � ���  #%#�#��  ) * satisfies the triangular system� < ��� . The model
1� 	 is equivalently expressed by

1� 	 ��� * �?� ��� (13)

where � �� � � � � 	�� � � 	��  #�#%#�� 	��  ) * is the � th row of � .

III. THE SPARSE DENSITY CONSTRUCTION

Let � � � �!���  2#%#�#��  ) * be the regularization parameter vector associated with � . If
an � -term model is selected from the full model (12), the LOO test error [6]–[9], denoted
as %! � 3 	��� � , for the selected � -term model can be shown to be [9],[5]

%  �� 3 	 �� � � %! ��� �"  ��?� � (14)

where %  �?� � is the � -term modeling error and "  �� � is the associated LOO error weight-
ing given by "  �� �2� � �  3 A ��� �  	�� A� *A � A ##� A (15)

The mean square LOO error for the model with a size � is defined by
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This LOO test score can be computed efficiently due to the fact that the � -term model error%� ��?� � and the associated LOO error weighting can be calculated recursively according to

%! ��� �2� � 	 �  3 A ��� � 	�� A*� A
�0%� 3 �6�?� � � � 	6�  +�, (17)
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"  �?� �2��� �  3 A ��� �  	�� A� *A � A # � A � "  3 � �� � � �  	��  � * �  F##�  (18)

The model selection procedure is carried as follows: at the � th stage of selection, a model
term is selected among the remaining � to 
 candidates if the resulting � -term model
produces the smallest LOO test score

$  . It has been shown in [9] that there exists an
“optimal” model size � � such that for � . � � $  decreases as � increases while for� � � � #B� $  increases as � increases. This property enables the selection procedure
to be automatically terminated with an � � -term model when

$  ������ - $  �� , without the
need for the user to specify a separate termination criterion. The iterative SDC procedure
based on this OFR with LOO test score and local regularization is summarized:

Initialization. Set � A , � .,L .N
 , to the same small positive value (e.g. 0.001). Set
iteration

� ��� .
Step 1. Given the current � and with the following initial conditions%	� �� � � � 	 and " ���� � ��� 7	� ��� 7	� 7�#%#%#�7�
 7 $ � � D

*
D�
 


use the procedure as described in [4],[5] to select a subset model with �� terms.
Step 2. Update � using the evidence formula as described in [4],[5]. If � remains

sufficiently unchanged in two successive iterations or a pre-set maximum iteration number
(e.g. 10) is reached, stop; otherwise set

� # � � and go to Step 1.

The computational complexity of the above algorithm is dominated by the 1st iteration.
After the 1st iteration, the model set contains only � � ��� 
 � terms, and the complexity
of the subsequent iteration decreases dramatically. As a probability density, the constraint
(2) must be met. The non-negative condition is ensured during the selection with the
following simple measure. Let <  denote the weight vector at the � th stage. A candidate
that causes <  to have negative elements, if included, will not be considered at all. The
unit length condition is easily met by normalizing the final � � -term model weights.

IV. NUMERICAL EXAMPLES

In order to remove the influence of different � values to the quality of the resulting
density estimate, the optimal value for � , found empirically by cross validation, was used.
In each case, a data set of 
 randomly drawn samples was used to construct kernel density
estimates, and a separate test data set of 
���� � �(� � � 7=�8� � samples was used to calculate
the �  test error for the resulting estimate according to

�$ � �
���� � � ���� � �3
	����

� ���0�
	 �
� 1���0�
	 �&�  (19)

The experiment was repeated by 100 different random runs for each example.

Example 1. This was a 1-D example with the density to be estimated given by

����� �2� ���� ��� ��� � ��� ��� ��� # � �  ��� � � # ���� �"� ����� ��� �  � � (20)
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TABLE I

PERFORMANCE OF THE PARZEN WINDOW ESTIMATE AND THE PROPOSED SPARSE DENSITY

CONSTRUCTION ALGORITHM FOR THE ONE-DIMENSIONAL EXAMPLE. STD: STANDARD DEVIATION.

method �  test error (mean � STD) kernel number (mean � STD)
Parzen �@��� ���������2��� � � ��� �	� � � 3�
 ���8���2�
SDC � ��� ���8� �	� ��� � ����� �� � � 3�
 ��� ��� ��� �

The number of data points for density estimation was 
 �O��� � . The optimal kernel
widths were found to be � � ��� � and � �0� � � empirically for the Parzen window estimate
and the SDC estimate, respectively. Table I compares the performance of the two kernel
density construction methods, in terms of the �  test error and the number of kernels
required. Fig. 1 (a) depicts the Parzen window estimated obtained in a run while Fig. 1
(b) shows the density obtained by the SDC algorithm in a run, in comparison with the
true distribution. It is seen that the accuracy of the SDC algorithm was comparable to that
of the Parzen window estimate, and the algorithm realized very sparse estimates with an
average kernel number less than 4% of the data samples.

Example 2. In this 6-D example, the underlying density to be estimated was given by

�����
�2� �� �6���
� � �  + �� ��� � � � � ����� ��� �� ��� ��� � � * � 3 �� ���
���

� � � #�� ��� � �  � � �*� � � �� ��� ���  � * � 3 � ���
���

 � � #�� ��� � � 
 � ����� � � �� �0� ��� 
 � * � 3 �
 ���
��� 
 � � � (21)

with �
� � � ��� �F��� �F��� �F��� �F��� �F��� � )+*� � � diag �8��� � 7�� � � 7 ��� � 7	� � � 7 ��� � 7�� � � � (22)�

 � �
� ��� � � ��� � � ��� � � ��� � � ��� � � ��� � ) *�  � diag � � � � 7 ��� � 7	� � � 7 ��� � 7�� � � 7 ��� ��� (23)
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Fig. 1. (a) true density (solid) and a Parzen window estimate (dashed), and (b) true density (solid) and a sparse
density construction estimate (dashed), for the one-dimensional example.
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TABLE II

PERFORMANCE OF THE PARZEN WINDOW ESTIMATE AND THE PROPOSED SPARSE DENSITY

CONSTRUCTION ALGORITHM FOR THE SIX-DIMENSIONAL EXAMPLE. STD: STANDARD DEVIATION.

method �  test error (mean � STD) kernel number (mean � STD)
Parzen � ��� �����2��� �*� ��� � � 3 � � �8���2�
SDC � � � � � �&� � � � ��� � � 3 � � ��� ��� � � �� 
 � � � � � � � � ��� � � � � � � � ��� � ) *� 
 � diag � � � � 7 ��� � 7�� � � 7 ��� � 7	� � � 7 ��� � � (24)

The estimation data set contained 
 � �8� � samples. The optimal kernel width was found
to be � �K� � � for the Parzen window estimate and � � ��� � for the SDC estimate, respec-
tively. The results obtained by the two density construction algorithms are summarized
in Table II. It can be seen that the SDC algorithm achieved a similar accuracy to that of
the Parzen window estimate with a much sparser representation. The average number of
required kernels for the SDC method was less than 3% of the data samples.

V. CONCLUSIONS

An efficient algorithm has been proposed for obtaining sparse kernel density estimates
based on an OFR procedure that incrementally minimizes the LOO test score, coupled
with local regularization. The proposed method is simple to implement and computa-
tionally efficient, and except for the kernel width the algorithm contains no other free
parameters that require tuning. The ability of the proposed algorithm to construct a very
sparse kernel density estimate with a comparable accuracy to that of the full sample Parzen
window estimate has been demonstrated using two examples. The results obtained have
shown that the proposed method provides a viable alternative for sparse kernel density
estimation in practical applications.
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