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Overview

© Density estimation is a recurrent theme in machine learning and many fields of
engineering — It is a hard, ill-posed and unsupervise “learning problem”

© Non-parametric techniques

Parzen window estimate: remarkably simple and accurate but non-sparse

SVM based sparse kernel density estimation technique

Related reduced data density estimation technique

© This contribution proposes a sparse kernel density construction based on
orthogonal forward regression — an efficient technique widely used in parsimonious
data modelling
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Kernel Density Estimation as Regression

© Estimate unknown PDF p(x) from finite sample set D = {xk}N
k=1 using kernel model

p̂(x) =

N∑
k=1

βkK(x, xk)

where xk = [x1,k · · · xm,k]
T ∈ Rm, with constraints

βk ≥ 0, 1 ≤ k ≤ N ;

N∑
k=1

βk = 1

© Define empirical distribution function

f(x; N) =
1

N

N∑
k=1

m∏
j=1

θ(xj − xj,k)

where θ(x) = 1 if x > 0 and θ(x) = 0 if x ≤ 0, and “regressor”

q(x, xk) =

∫ x

−∞
K(u, xk) du
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Regression Modelling (continue)

© This leads to regression model

f = Φβ + ε

where f = [f1 · · · fN ]T with fk = f(xk;N), β = [β1 · · ·βN ]T

Φ = [φ1 · · ·φN ] with φk = [q1,k · · · qN,k]T and qi,k = q(xi,xk)

© Let orthogonal decomposition

Φ = WA

where orthogonal matrix W = [w1 · · ·wN ] has orthogonal columns

© Orthogonal regression model

f = Wg + ε

with g = Aβ
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Sparse Density Construction

© Effectively becomes a sparse regression modeling

© Efficient orthogonal forward selection algorithm to select a subset model:

Incrementally minimize leave-one-out test error, a direct measure of model
generalization ability

Multiple-regularizer or local regularization further enforce model sparsity

Automatically construct a sparse subset model (user does not need to specify any
algorithmic parameters)

© Details in: S. Chen, X. Hong and C.J. Harris, “Sparse kernel density construction using

orthogonal forward regression with leave-one-out test score and local regularization,” IEEE Trans.
Systems, Man and Cybernetics, Part B, Vol.34, No.4, pp.1708–1717, August 2004.
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A Two-Dimensional Example

© Density to be estimated:

p(x, y) = 0.5
1
2π

e−
(x−2)2

2 e−
(y−2)2

2 + 0.5
0.35
4

e−0.7|x+2| e−0.5|y+2|

© Estimation set: 500 samples, Test set for calculate L1 error: 10000 samples,
Gaussian kernel used

© Mean and standard deviation for 100 experiments

method L1 test error kernel number
PW (4.084± 0.779)× 10−3 500± 0
SDC (3.628± 0.826)× 10−3 11.9± 2.6

Result of SDC also compares favorably with known result of SVM for this example
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2-D Example: True Density
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2-D Example: A Parzen Window Estimate
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2-D Example: A Sparse Density Construction Estimate
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A Classification Example

© Synthetic 2-class classification in 2-D feature space from:

http://www.stats.ox.ac.uk/PRNN/

© Training set: 250 samples and 125 points for each class, Test set: 1000 samples
and 500 points for each class, optimal Bayes error rate for test set ≈ 8%

© With Gaussian kernel, construct two class-conditional PDFs, then use them to
form Bayes classifier

method p̂(•|C0) p̂(•|C1) test error rate
PW 125 kernels 125 kernels 8.1%
SDC 5 kernels 4 kernels 8.3%

Result of SDC also compares favorably with known result of SVM classification for this example

(38-kernel classifier with test error rate 10.6%)
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Classification Example: Decision Boundary
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(a) Parzen window estimate and (b) sparse density construction estimation, where circles represent

class-1 training data and crosses class-0 training data
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Conclusions

• Efficient construction algorithm has been presented for obtaining kernel density
estimates based on orthogonal forward regression that incrementally minimizes
leave-one-out test score, coupled with local regularization to further enforce
sparsity

• Proposed method is simple to implement and computationally efficient, and
except for kernel width the algorithm contains no other free parameters that
require tuning

• It offers a state-of-art technique for sparse kernel density estimation in practical
applications
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