Orthogonal Least Square with Boosting for Regression

S. Chen[†], X.X. Wang[‡] and D.J. Brown[‡]

[†] School of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, U.K. E-mail: sqc@ecs.soton.ac.uk

[‡] Department of Creative Technologies University of Portsmouth, Portsmouth PO1 3HE, U.K. E-mails: xunxian.wang@port.ac.uk, david.j.brown@port.ac.uk

Presented at 5th International Conference on Intelligent Data Engineering and Automated Learning, Exeter, U.K., August 25-27, 2004

Overview

Modeling from data: generalization, interpretability, knowledge extraction \Rightarrow All depend on ability to construct appropriate sparse models

 \bigcirc Existing sparse kernel regression modeling:

- 1) Orthogonal least squares forward selection construction
- 2) SVM type kernel modeling techniques
- Kernels position at training input data points with a common kernel variance

 \bigcirc This contribution considers generalized kernel model with tunable kernel centers and covariance matrices

OLS forward selection: each stage of selection determines a kernel regressor using a guided random search optimization based on boosting

• Enhancing modeling capability with much sparser representation

Generalized Kernel Modeling

 \bigcirc Modeling training data set $\{\mathbf{x}_l, y_l\}_{l=1}^N$ with regression model

$$y(\mathbf{x}) = \hat{y}(\mathbf{x}) + e(\mathbf{x}) = \sum_{i=1}^{M} w_i g_i(\mathbf{x}) + e(\mathbf{x})$$

○ Generalized kernel

$$g_i(\mathbf{x}) = G\left(\sqrt{(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)}\right)$$

where $oldsymbol{\mu}_i$ is kernel center and $oldsymbol{\Sigma}_i$ diagonal kernel covariance matrix

 \bigcirc Regression model over training set

$$\mathbf{y} = \mathbf{G}\mathbf{w} + \mathbf{e}$$

where $\mathbf{y} = [y_1 \cdots y_N]^T$, $\mathbf{w} = [w_1 \cdots w_M]^T$, $\mathbf{e} = [e(\mathbf{x}_1) \cdots e(\mathbf{x}_N)]^T$ and $\mathbf{G} = [\mathbf{g}_1 \ \mathbf{g}_2 \cdots \mathbf{g}_M]$ with $\mathbf{g}_k = [g_k(\mathbf{x}_1) \ g_k(\mathbf{x}_2) \cdots g_k(\mathbf{x}_N)]^T$

Orthogonal Decomposition

○ Orthogonal decomposition

$$G = PA$$

where orthogonal matrix $\mathbf{P} = [\mathbf{p}_1 \ \mathbf{p}_2 \cdots \mathbf{p}_M]$ has orthogonal columns

 \bigcirc Regression model becomes

$$\mathbf{y} = \mathbf{P}\boldsymbol{\theta} + \mathbf{e}$$

with $\boldsymbol{ heta} = \mathbf{A} \, \mathbf{w} = [heta_1 \cdots heta_M]^T$

 \bigcirc Least squares cost over training set

$$J = rac{1}{N} \mathbf{e}^T \mathbf{e} = rac{1}{N} \mathbf{y}^T \mathbf{y} - rac{1}{N} \sum_{i=1}^M \mathbf{p}_i^T \mathbf{p}_i heta_i^2$$

 \bigcirc Least squares cost for k-term subset model can be expressed recursively as

$$J_k = J_{k-1} - \frac{1}{N} \mathbf{p}_k^T \mathbf{p}_k \theta_k^2$$

Model Construction

 \bigcirc Select model terms one by one to incrementally minimize least squares cost

 \bigcirc Specifically, at k-stage of selection, determine k-th regressor's position μ_k and covariance matrix Σ_k by minimizing J_k

$$\min_{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k} J_k\left(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right)$$

 \bigcirc Procedure stops when

 $J_M < \xi$

where $\boldsymbol{\xi}$ is a chosen tolerance, ending with an M-term model

 \bigcirc We propose a guided random search to perform optimization

Alternative criteria, such as leave-one-out test error and optimal experiment design criteria, can be adopted here

Guided Random Search

Consider task of minimizing $f(\mathbf{u})$

Outer Loop: N_G number of generations

Initialization: keep best solution found in previous generation as \mathbf{u}_1 and randomly choose rest

of population $\mathbf{u}_2, \cdots, \mathbf{u}_{P_S}$

Inner Loop: N_I iterations

• Perform a convex combination

$$\mathbf{u}_{P_S+1} = \sum_{i=1}^{P_S} \,\delta_i \mathbf{u}_i$$

• Weightings

$$\delta_i \geq 0$$
 and $\sum_{i=1}^{P_S} \delta_i = 1$

are adopted (boosting) to reflect goodness of \mathbf{u}_i

• \mathbf{u}_{P_S+1} replaces worst member in population \mathbf{u}_i , $1 \le i \le P_S$ End of $Inner\ Loop$

End of *Outer Loop*

Electronics and Computer Science

Optimization Example

 \bigcirc Population size $P_S=6,$ number of Inner iterations $N_I=20$ and number of generations $N_G=12$

 \bigcirc 100 random experiments, populations of all 100 runs converge to global minimum

Simple Modeling Example

 \bigcirc 500 points of training data generated from

$$y(x) = 0.1x + \frac{\sin x}{x} + \sin 0.5x + \epsilon$$

where $x \in [-10, 10]$ and ϵ Gaussian white noise of variance 0.01

\bigcirc	Generalized	Gaussian	kernel	used,	modeling	accuracy	set to	$\xi =$	0.012:
------------	-------------	----------	--------	-------	----------	----------	--------	---------	--------

regression step k	mean μ_k	variance σ_k^2	weight w_k	$MSE\ J_k$
0	—	—	—	0.8431
1	2.6911	4.2480	2.3527	0.3703
2	-4.0652	2.1710	-2.5197	0.0339
3	3.0314	2.0059	-1.0609	0.0172
4	-4.1771	1.0909	0.8982	0.0151
5	-1.9783	64.0000	0.1190	0.0129
6	6.6853	0.3894	0.1548	0.0118

Simple Modeling Example (continue)

Noisy training data y(x), model output $\hat{y}(x)$ and modeling error $e(x) = y(x) - \hat{y}(x)$

Engine Data Modeling

 \bigcirc Modeling relationship between fuel rack position (input u(t)) and engine speed (output y(t)) for a Leyland TL11 turbocharged, direct injection diesel engine operated at low engine speed

 \bigcirc Data set contains 410 pairs of input-output samples (u_i, y_i) , modeled as $y_i = f_s(\mathbf{x}_i) + \epsilon_i$ with $\mathbf{x}_i = [y_{i-1} \ u_{i-1} \ u_{i-2}]^T$; First 210 data points for training and last 200 points for testing

 \bigcirc Generalized Gaussian kernel used, modeling accuracy set to $\xi = 0.00055$:

step k	mean vector $oldsymbol{\mu}_k$			diagonal covariance $\mathbf{\Sigma}_k$			weight w_k	$MSE\;J_k\times 100$
0		-			_		_	1558.9
1	5.2219	5.5839	5.6416	7.3532	21.0894	22.4661	6.0396	0.3866
2	4.2542	5.2741	4.1028	1.8680	10.0863	49.8826	-1.2845	0.1311
3	3.8826	5.1707	6.3200	0.1600	0.1600	64.0000	-0.1539	0.0996
4	2.3154	3.2544	5.4897	0.9447	0.3329	11.7564	-0.1433	0.0913
5	4.0673	4.4276	3.5963	0.1608	18.3731	0.2207	0.1945	0.0740
6	2.3663	3.2377	5.1376	0.1754	0.9317	0.1600	0.9658	0.0547

Test MSE: 0.000573

 \bigcirc To achieve same modeling accuracy for this data set, existing state-of-art kernel regression techniques required at least 22 regressors

Engine Data Modeling (continue)

Noisy training data y_i , model output \hat{y}_i and modeling error $e_i = y_i - \hat{y}_i$

11

Conclusions

- A novel construction algorithm has been proposed for parsimonious regression modeling based on OLS algorithm with boosting
- Proposed algorithm has ability to tune center and diagonal covariance matrix of individual regressor to incrementally minimize training mean square error
- A guided random search method has been developed to append regressors one by one in an orthogonal forward regression procedure
- Our method offers enhanced modeling capability with very sparse representation

