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Overview

Modeling from data: generalization, interpretability, knowledge extraction ⇒ All
depend on ability to construct appropriate sparse models

© Existing sparse kernel regression modeling:

1) Orthogonal least squares forward selection construction

2) SVM type kernel modeling techniques

• Kernels position at training input data points with a common kernel variance

© This contribution considers generalized kernel model with tunable kernel centers
and covariance matrices

OLS forward selection: each stage of selection determines a kernel regressor using
a guided random search optimization based on boosting

• Enhancing modeling capability with much sparser representation
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Generalized Kernel Modeling

© Modeling training data set {xl, yl}N
l=1 with regression model

y(x) = ŷ(x) + e(x) =

M∑
i=1

wigi(x) + e(x)

© Generalized kernel

gi(x) = G

(√
(x− µi)

TΣ−1
i (x− µi)

)
where µi is kernel center and Σi diagonal kernel covariance matrix

© Regression model over training set

y = G w + e

where y = [y1 · · · yN ]T , w = [w1 · · ·wM ]T , e = [e(x1) · · · e(xN)]T and

G = [g1 g2 · · · gM ] with gk = [gk(x1) gk(x2) · · · gk(xN)]
T
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Orthogonal Decomposition

© Orthogonal decomposition

G = PA
where orthogonal matrix P = [p1 p2 · · · pM ] has orthogonal columns

© Regression model becomes

y = Pθ + e
with θ = A w = [θ1 · · · θM ]T

© Least squares cost over training set

J =
1

N
eTe =

1

N
yTy −

1

N

M∑
i=1

pT
i piθ

2
i

© Least squares cost for k-term subset model can be expressed recursively as

Jk = Jk−1 −
1

N
pT

k pkθ
2
k
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Model Construction

© Select model terms one by one to incrementally minimize least squares cost

© Specifically, at k-stage of selection, determine k-th regressor’s position µk and
covariance matrix Σk by minimizing Jk

min
µk,Σk

Jk (µk,Σk)

© Procedure stops when
JM < ξ

where ξ is a chosen tolerance, ending with an M -term model

© We propose a guided random search to perform optimization

Alternative criteria, such as leave-one-out test error and optimal experiment design criteria, can be

adopted here
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Guided Random Search

Consider task of minimizing f(u)

Outer Loop: NG number of generations

Initialization: keep best solution found in previous generation as u1 and randomly choose rest

of population u2, · · · , uPS

Inner Loop: NI iterations

• Perform a convex combination

uPS+1 =

PS∑
i=1

δiui

• Weightings

δi ≥ 0 and

PS∑
i=1

δi = 1

are adopted (boosting) to reflect goodness of ui

• uPS+1 replaces worst member in population ui, 1 ≤ i ≤ PS

End of Inner Loop
End of Outer Loop
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Optimization Example

© Population size PS = 6, number of Inner iterations NI = 20 and number of
generations NG = 12

© 100 random experiments, populations of all 100 runs converge to global
minimum
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Simple Modeling Example

© 500 points of training data generated from

y(x) = 0.1x +
sinx

x
+ sin 0.5x + ε

where x ∈ [−10, 10] and ε Gaussian white noise of variance 0.01

© Generalized Gaussian kernel used, modeling accuracy set to ξ = 0.012:

regression step k mean µk variance σ2
k weight wk MSE Jk

0 – – – 0.8431

1 2.6911 4.2480 2.3527 0.3703

2 -4.0652 2.1710 -2.5197 0.0339

3 3.0314 2.0059 -1.0609 0.0172

4 -4.1771 1.0909 0.8982 0.0151

5 -1.9783 64.0000 0.1190 0.0129

6 6.6853 0.3894 0.1548 0.0118
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Simple Modeling Example (continue)
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Engine Data Modeling

© Modeling relationship between fuel rack position (input u(t)) and engine speed (output y(t))

for a Leyland TL11 turbocharged, direct injection diesel engine operated at low engine speed

© Data set contains 410 pairs of input-output samples (ui, yi), modeled as yi = fs(xi) + εi

with xi = [yi−1 ui−1 ui−2]
T ; First 210 data points for training and last 200 points for testing

© Generalized Gaussian kernel used, modeling accuracy set to ξ = 0.00055:

step k mean vector µk diagonal covariance Σk weight wk MSE Jk × 100

0 – – – 1558.9
1 5.2219 5.5839 5.6416 7.3532 21.0894 22.4661 6.0396 0.3866
2 4.2542 5.2741 4.1028 1.8680 10.0863 49.8826 -1.2845 0.1311
3 3.8826 5.1707 6.3200 0.1600 0.1600 64.0000 -0.1539 0.0996
4 2.3154 3.2544 5.4897 0.9447 0.3329 11.7564 -0.1433 0.0913
5 4.0673 4.4276 3.5963 0.1608 18.3731 0.2207 0.1945 0.0740
6 2.3663 3.2377 5.1376 0.1754 0.9317 0.1600 0.9658 0.0547

Test MSE: 0.000573

© To achieve same modeling accuracy for this data set, existing state-of-art kernel regression

techniques required at least 22 regressors
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Engine Data Modeling (continue)

 2.5

 3

 3.5

 4

 4.5

 5

 0  50  100  150  200  250  300  350  400

sy
st

em
 o

ut
pu

t/m
od

el
 p

re
di

ct
io

n

sample

System
Model

-0.09

-0.06

-0.03

 0

 0.03

 0.06

 0.09

 0  50  100  150  200  250  300  350  400

m
od

el
 p

re
di

ct
io

n 
er

ro
r

sample

Noisy training data yi, model output ŷi and modeling error ei = yi − ŷi
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Conclusions

• A novel construction algorithm has been proposed for parsimonious regression
modeling based on OLS algorithm with boosting

• Proposed algorithm has ability to tune center and diagonal covariance matrix of
individual regressor to incrementally minimize training mean square error

• A guided random search method has been developed to append regressors one
by one in an orthogonal forward regression procedure

• Our method offers enhanced modeling capability with very sparse representation
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