IDEAL 2007 Presentation

Sparse Kernel Modelling: A Unified Approach

S. Chen^{\dagger}, X. Hong^{\ddagger} and C.J. Harris^{\dagger}

[†] School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK

[‡] Department of Cybernetics, University of Reading, RG6 6AY, UK Motivations and existing approaches for parsimonious
 kernel data modelling

- □ The proposed unified data modelling approach for
 ☆ regression (supervised learning)
 ☆ classification (supervised learning)
 ☆ density estimation (unsupervised learning)
- □ Experimental investigation of the proposed approach and comparison with some existing techniques

☐ In kernel data modelling, training data are all one has to build a model

- * Yet objective of modelling from data is not that model simply fits training data well
- Rather, goodness of a model is characterised by its generalisation capability, interpretability and ease of knowledge extraction
- □ All depend crucially on ability to construct **parsimonious** models that capture underlying **data generating mechanism**
- \Box How to measure **goodness** of modelling process
 - **☆ Generalisation** performance
 - ☆ **Sparsity** level or model size
 - \checkmark Computational **efficiency** of modelling process

Data Modelling Classes

□ Supervised learning

- **Regression**: infer model $\hat{f} : \mathcal{R}^m \to \mathcal{R}$ that captures data generating machanism $f : \mathcal{R}^m \to \mathcal{R}$ based on training data $D_N = \{\mathbf{x}_k, y_k\}_{k=1}^N$ generated from $y = f(\mathbf{x}) + e$, e being observation noise
- **Classification** (two-class): infer classifier $\hat{f} : \mathcal{R}^m \to \{-1, +1\}$ that models data generating machanism $f : \mathcal{R}^m \to \{-1, +1\}$ based on training data $D_N = \{\mathbf{x}_k, y_k\}_{k=1}^N, y_k$ being class label for \mathbf{x}_k

Unsupervised learning

- *** Probability density function** estimation: infer estimate $\hat{f} : \mathcal{R}^m \to \mathcal{R}_+$, based on training data $D_N = \{\mathbf{x}_k\}_{k=1}^N$ drawn from unknown true density $f : \mathcal{R}^m \to \mathcal{R}_+$
- ★ Desired response for \mathbf{x}_k is unavailable, and this is **constrained** learning, as $\int_{\mathcal{R}^m} \hat{f}(\mathbf{u}) d\mathbf{u} = 1$

□ Sparse kernel modelling techniques, e.g. support vector machines

- ☆ From full kernel model, try to obtain sparse representation by making many kernel weights to (near) zeros
- ☆ Robust and optimal; in practice, not as sparse as OLS approach, and a few hyperparameters to tune
- □ Orthogonal-least-squares algorithm for forward selection,
 - \clubsuit Use computationally efficient OLS to choose a small subset of significant kernels one by one
 - ☆ Suboptimal; in practice, much sparser models with equally good generalisation performance, and fewer hyperparameters to tune
- □ This work adopts OLS for forward selection based on **leave-one-out** test criterion and **local regularisation**

□ Placing a kernel on each training data \mathbf{x}_k and linearly combining all model bases

$$\hat{y}(\mathbf{x}) = \sum_{k=1}^{N} \beta_k K_{\rho}(\mathbf{x}, \mathbf{x}_k)$$

□ Adavantage is linear least squares solution readily available for weights β_k , but it is critically important to obtain **sparse** representation

☐ Gaussian kernel

$$K_{\rho}(\mathbf{x}, \mathbf{c}_{k}) = \begin{cases} e^{-\frac{\|\mathbf{x}-\mathbf{c}_{k}\|^{2}}{2\rho^{2}}}, \\ \frac{1}{(2\pi\rho^{2})^{m/2}}e^{-\frac{\|\mathbf{x}-\mathbf{c}_{k}\|^{2}}{2\rho^{2}}}, \end{cases}$$

for regression and classification,

for density estimation,

□ Kernel width ρ is usually not provided by modelling algorithm itself and must be determined via **cross validation**

Regression Modelling

☐ At a training point $(\mathbf{x}_k, y_k) \in D_N$, kernel model can be expressed as

$$y_k = \hat{y}_k + \epsilon_k = \sum_{i=1}^N \beta_i K_\rho(\mathbf{x}_k, \mathbf{x}_i) + \epsilon_k = \boldsymbol{\phi}^T(k)\boldsymbol{\beta} + \epsilon_k$$

where $\epsilon_k = y_k - \hat{y}_k$ is **modelling error** at \mathbf{x}_k , $\boldsymbol{\beta} = [\beta_1 \ \beta_2 \cdots \beta_N]^T$ and $\boldsymbol{\phi}(k) = [K_{k,1} \ K_{k,2} \cdots K_{k,N}]^T$ with $K_{k,i} = K_{\rho}(\mathbf{x}_k, \mathbf{x}_i)$

 $\hfill\square$ By defining **regression matrix**

$$oldsymbol{\Phi} = [oldsymbol{\phi}_1 \ oldsymbol{\phi}_2 \cdots oldsymbol{\phi}_N]$$

with $\boldsymbol{\phi}_k = [K_{1,k} \ K_{2,k} \cdots K_{N,k}]^T$ for $1 \leq k \leq N$, $\mathbf{y} = [y_1 \ y_2 \cdots y_N]^T$ and $\boldsymbol{\epsilon} = [\epsilon_1 \ \epsilon_2 \cdots \epsilon_N]^T$, regression model over D_N can be expressed as

$$\mathbf{y} = \mathbf{\Phi} \boldsymbol{eta} + \boldsymbol{\epsilon}$$

 \Box Note ϕ_k is k-th column of Φ , while $\phi^T(k)$ denotes k-th row of Φ

Orthogonal decomposition of regression matrix: $\Phi = WA$, where

$$\mathbf{A} = \begin{bmatrix} 1 & a_{1,2} & \cdots & a_{1,N} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{N-1,N} \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

 $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \cdots \mathbf{w}_N] \text{ with orthogonal columns: } \mathbf{w}_i^T \mathbf{w}_j = 0, \text{ if } i \neq j$ Regression model can alternatively be expressed as $\mathbf{y} = \mathbf{W}\mathbf{g} + \boldsymbol{\epsilon},$

where new weight vector $\mathbf{g} = [g_1 \ g_2 \cdots g_N]^T$ satisfies $\mathbf{A} \boldsymbol{\beta} = \mathbf{g}$

□ Space spanned by **original bases** ϕ_k is identical to space spanned by **orthogonal bases** \mathbf{w}_k , and model is equivalently expressed by $\hat{y}_k = \mathbf{w}^T(k) \mathbf{g}$, where $\mathbf{w}^T(k) = [w_{k,1} \ w_{k,2} \cdots w_{k,N}]$ is k-th row of **W**

Regularised LS solution for \mathbf{g} is obtained by minimising

$$J_R(\mathbf{g}, \boldsymbol{\lambda}) = \boldsymbol{\epsilon}^T \boldsymbol{\epsilon} + \sum_{i=1}^N \lambda_i g_i^2 = \boldsymbol{\epsilon}^T \boldsymbol{\epsilon} + \mathbf{g}^T \boldsymbol{\Lambda} \mathbf{g}$$

Hyperparameters λ_i specify prior distributions of g, and initially λ_i are set to same small value (same flat distribution for each prior of g_i)
 Evidence procedure is used to update regularisation parameters

$$\lambda_i^{\text{new}} = \frac{\gamma_i^{\text{old}}}{N - \gamma^{\text{old}}} \frac{\boldsymbol{\epsilon}^T \boldsymbol{\epsilon}}{g_i^2}, \ 1 \le i \le N$$

where g_i for $1 \leq i \leq N$ denote current estimated parameter values, and

$$\gamma = \sum_{i=1}^{N} \gamma_i \quad \text{with} \quad \gamma_i = \frac{\mathbf{w}_i^T \mathbf{w}_i}{\lambda_i + \mathbf{w}_i^T \mathbf{w}_i}$$

 \square A few iterations (typically $\leq 10)$ are sufficient to find (near) optimal $\pmb{\lambda}$

Leave-one-out cross validation

- ☆ **Remove** k-th data from D_N and use resultant $D_n \setminus (\mathbf{x}_k, y_k)$ to identify a *n*-term model, denoting as $\hat{f}^{(n,-k)}$
- ☆ Test error for this *n*-term model calculated on (\mathbf{x}_k, y_k) not used in training is

$$\epsilon_k^{(n,-k)} = y_k - \hat{f}^{(n,-k)}(\mathbf{x}_k) = y_k - \hat{y}_k^{(n,-k)}$$

☆ **Repeat** for $1 \le k \le N$ to obtain leave-one-out test mean square error

$$J_n = \frac{1}{N} \sum_{k=1}^{N} \left(\epsilon_k^{(n,-k)} \right)^2$$

which is a measure of *n*-term model's **generalisation** performance
In the second s

□ It can be shown that **leave-one-out** test error is $\epsilon_k^{(n,-k)} = \epsilon_k^{(n)} / \eta_k^{(n)}$ ☆ *n*-term **modelling error** $\epsilon_k^{(n)}$ can be expressed as

$$\epsilon_k^{(n)} = \epsilon_k^{(n-1)} - w_{k,n} g_n$$

where $w_{k,n}$ is k-th element of \mathbf{w}_n

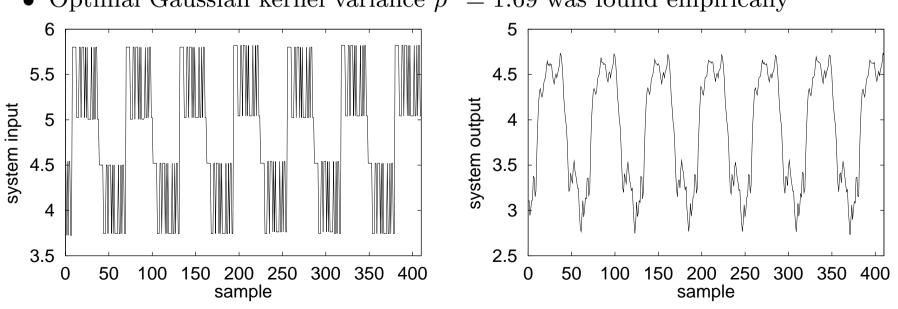
☆ Leave-one-out error weighting $\eta_k^{(n)}$

$$\eta_k^{(n)} = \eta_k^{(n-1)} - \frac{w_{k,n}^2}{\mathbf{w}_n^T \mathbf{w}_n + \lambda_n}$$

- □ At *n*-th stage of **OLS selection** procedure, *n*-th model term is selected to minimise leave-one-out **test mean square error** J_n
- □ Selection procedure is **automatically** terminated when $J_{N_s+1} \ge J_{N_s}$, where $N_s \ll N$, yielding N_s -term **sparse model**

Engine Data Set

- □ Modelling relationship between fuel rack position (input u_k) and engine speed (output y_k) for a **diesel engine** operated at **low engine speed**
- Data set contained 410 samples with first 210 points for training and last 200 points for test
- This data set can be represented as $y_k = f(\mathbf{x}_k) + e_k$ where e_k denotes system noise and $\mathbf{x}_k = [y_{k-1} \ u_{k-1} \ u_{k-2}]^T$



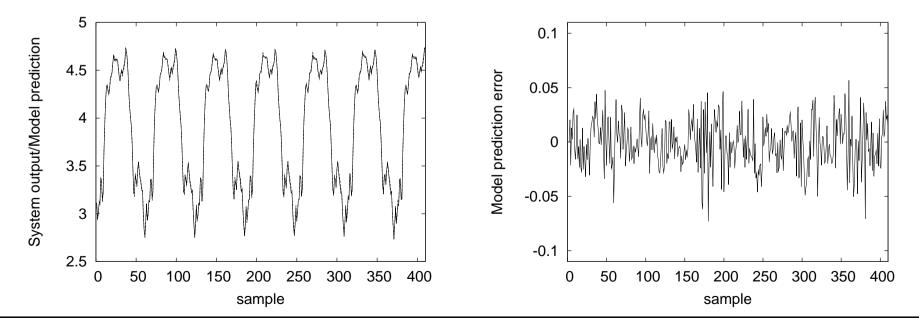
• Optimal Gaussian kernel variance $\rho^2 = 1.69$ was found empirically

Engine Data Set (continue)

• Modelling accuracy for the engine data set using proposed OLS and SVM algorithms

algorithm	model size	training MSE	test MSE
OLS	22	0.000453	0.000490
\mathbf{SVM}	92	0.000447	0.000498

• Modelling for engine data set using OLS: (a) prediction \hat{y}_k (dashed) superimposed on system output y_k (solid), and (b) prediction error $\epsilon_k = y_k - \hat{y}_k$



IDEAL 2007

School of ECS, University of Southampton, UK

Boston Housing Data Set

- **Boston housing** data set: a regression benchmark comprised 506 data points with 14 variables
 - Predict median house value from remaining 13 attributes
 - 456 data points were randomly selected for training and remaining 50 data points were used to form test set
 - Average results were given over 100 repetitions
 - Optimal Gaussian kernel width was found via cross validation
- Modelling accuracy for Boston housing data set: Results were averaged over 100 realizations and quoted as mean±standard deviation

algorithm	model size	training MSE	test MSE
OLS	58.6 ± 11.3	12.9690 ± 2.6628	17.4157 ± 4.6670
SVM	243.2 ± 5.3	6.7986 ± 0.4444	23.1750 ± 9.0459

Given training set $D_N = {\mathbf{x}_k, y_k}_{k=1}^N$, where $\mathbf{x}_k \in \mathcal{R}^m$ is pattern vector and $y_k \in {-1, +1}$ is class label for $\mathbf{x}_k \Rightarrow$ construct kernel classifier

$$\tilde{y}_k = \operatorname{sgn}(\hat{y}_k) \text{ with } \hat{y}_k = \sum_{i=1}^N \beta_i K_\rho(\mathbf{x}_k, \mathbf{x}_i)$$

 \tilde{y}_k is estimated class label for \mathbf{x}_k , $\operatorname{sgn}(y) = -1$ if $y \leq 0$ and $\operatorname{sgn}(y) = +1$ if y > 0

- □ Define **modelling error** $\epsilon_k = y_k \hat{y}_k \Rightarrow$ classification model over D_N can be expressed as: $\mathbf{y} = \mathbf{\Phi} \, \mathbf{\beta} + \mathbf{\epsilon}$
- □ Or equivalently in **orthogonal regression model** form: $\mathbf{y} = \mathbf{W}\mathbf{g} + \boldsymbol{\epsilon}$, where all relevant notations are as defined for regression modelling
- □ Classifier construction has same regression modelling form, but how good a classifier is is judged by its misclassification rate

- □ Define leave-one-out signed decision variable: $s_k^{(n,-k)} = y_k \hat{y}_k^{(n,-k)}$, where $\hat{y}_k^{(n,-k)}$ is test output of *n*-term model evaluated at *k*-th data sample not used in training
- □ Leave-one-out **misclassification rate** can be computed as

$$J_n = \frac{1}{N} \sum_{k=1}^{N} \mathcal{I}_d\left(s_k^{(n,-k)}\right)$$

indicator function $\mathcal{I}_d(y) = 1$ if $y \leq 0$ and $\mathcal{I}_d(y) = 0$ if y > 0

- ☐ From leave-one-out *n*-term modelling error, it can be shown that leaveone-out *n*-term signed decision variable is: $s_k^{(n,-k)} = \psi_k^{(n)} / \eta_k^{(n)}$
- \Box Leave-one-out error weighting $\eta_k^{(n)}$ can be computed recursively and similarly

$$\psi_k^{(n)} = \psi_k^{(n-1)} + y_k g_n w_{k,n} - \frac{w_{k,n}^2}{\mathbf{w}_n^T \mathbf{w}_n + \lambda_n}$$

Breast Cancer Data Set

0		
method	test error rate	model size
RBF-Network	27.64 ± 4.71	5
AdaBoost with RBF-Network	30.36 ± 4.73	5
LP-Reg-AdaBoost (-"-)	26.79 ± 6.08	5
QP-Reg-AdaBoost $(-"-)$	25.91 ± 4.61	5
AdaBoost-Reg (-"-)	26.51 ± 4.47	5
SVM with RBF-Kernel	26.04 ± 4.74	not available
Kernel Fisher Discriminant	24.77 ± 4.63	200
OLS	25.74 ± 5.00	6.0 ± 2.0

Average classification test error rate in % over 100 realizations

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

Diabetis Data Set

method	test error rate	model size
RBF-Network	24.29 ± 1.88	15
AdaBoost with RBF-Network	26.47 ± 2.29	15
LP-Reg-AdaBoost (-"-)	24.11 ± 1.90	15
QP-Reg-AdaBoost $(-"-)$	25.39 ± 2.20	15
AdaBoost-Reg (-"-)	23.79 ± 1.80	15
SVM with RBF-Kernel	23.53 ± 1.73	not available
Kernel Fisher Discriminant	23.21 ± 1.63	468
OLS	23.00 ± 1.70	6.0 ± 1.0

Average classification test error rate in % over 100 realizations

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

Parzen window estimate $\hat{f}(\mathbf{x}; \boldsymbol{\beta}_{Par}, \rho_{Par})$ can be regarded as "observation" of true density contaminated by "observation noise"

$$\hat{f}(\mathbf{x}; \boldsymbol{\beta}_{\operatorname{Par}}, \rho_{\operatorname{Par}}) = f(\mathbf{x}) + \tilde{\epsilon}(\mathbf{x})$$

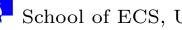
Kernel density estimation can be viewed as constrained regression with Parzen window estimate as **desired response**

$$\hat{f}(\mathbf{x}; \boldsymbol{\beta}_{\mathrm{Par}}, \rho_{\mathrm{Par}}) = \sum_{k=1}^{N} \beta_k K_{\rho}(\mathbf{x}, \mathbf{x}_k) + \epsilon(\mathbf{x})$$

subject to constraints $\beta_k \geq 0, 1 \leq k \leq N$, and $\boldsymbol{\beta}^T \mathbf{1}_N = 1$

 \Box Define $y_k = \hat{f}(\mathbf{x}_k; \boldsymbol{\beta}_{Par}, \rho_{Par})$ and $\epsilon_k = \epsilon(\mathbf{x}_k) \Rightarrow$ density estimation is expressed as **regression modelling**: $\mathbf{y} = \mathbf{\Phi} \mathbf{\beta} + \boldsymbol{\epsilon}$, or alternatively: $\mathbf{y} = \mathbf{W}\mathbf{g} + \boldsymbol{\epsilon}$

□ Subject to **nonnegative** and **unity** constraints



- □ OLS sparse kernel regression modelling algorithm to select sparse N_s -term subset model, where $N_s \ll N$
 - This determines structure of density estimate, containing N_s significant kernels
- □ **Multiplicative nonnegative quadratic programming** to calculate kernel weights
 - Formally, task is to find $\boldsymbol{\beta}_{N_s}$ for regression model

$$\mathbf{y} = \mathbf{\Phi}_{N_s} oldsymbol{eta}_{N_s} + oldsymbol{\epsilon}$$

• Subject to nonnegative constraint

$$\beta_i \ge 0, \ 1 \le i \le N_s$$

and unity constraint

$$\boldsymbol{\beta}_{N_s}^T \mathbf{1}_{N_s} = 1$$

• Density to be estimated was mixture of Gaussian and Laplacian

$$p(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-2)^2}{2}} + \frac{0.7}{4}e^{-0.7|x+2|}$$

- Number of training data points was N = 100, separate test data set of $N_{\text{test}} = 10,000$ samples was used to calculate L_1 test error

$$L_1 = \frac{1}{N_{\text{test}}} \sum_{k=1}^{N_{\text{test}}} |p(\mathbf{x}_k) - \hat{p}(\mathbf{x}_k; \boldsymbol{\beta}, \boldsymbol{\rho})|$$

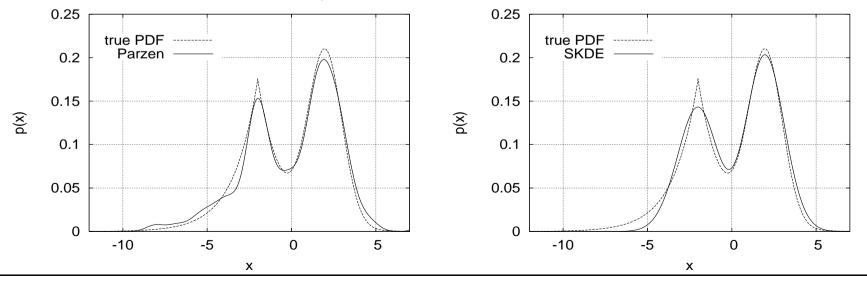
together with Kullback-Leibler divergence

$$\text{KLD} = \int_{\mathcal{R}^m} p(\mathbf{x}) \log \left(\frac{p(\mathbf{x})}{\hat{p}(\mathbf{x}; \boldsymbol{\beta}, \rho)} \right) d\mathbf{x}$$

- Experiment was repeated $N_{\rm run} = 100$ times, optimal kernel widths were found to be $\rho = 0.54$ and $\rho = 1.1$ empirically for Parzen window estimate and proposed sparse kernel density estimate, respectively • Performance comparsion

method	L_1 test error	K-L divergence	kernel no.
PWE	$(1.9963 \pm 0.6179) \times 10^{-2}$	$(8.0003 \pm 5.1662) \times 10^{-2}$	100 ± 0
OLS	$(2.0213 \pm 0.6535) \times 10^{-2}$	$(8.1419 \pm 5.0102) \times 10^{-2}$	5.1 ± 1.2

• A Parzen window estimate and a sparse kernel density estimate, in comparison with true density



IDEAL 2007

School of ECS, University of Southampton, UK

Six-Dimensional Example

• Density to be estimated was mixture of three Gaussian distributions

$$p(\mathbf{x}) = \frac{1}{3} \sum_{i=1}^{3} \frac{1}{(2\pi)^{6/2}} \frac{1}{\det^{1/2} |\mathbf{\Gamma}_i|} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{\Gamma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)}$$

 $\boldsymbol{\mu}_1 = \begin{bmatrix} 1.0 \ 1.0 \ 1.0 \ 1.0 \ 1.0 \ 1.0 \end{bmatrix}^T \quad \boldsymbol{\Gamma}_1 = \text{diag}\{1.0, 2.0, 1.0, 2.0, 1.0, 2.0\}$

 $\boldsymbol{\mu}_2 = \begin{bmatrix} -1.0 & -1.0 & -1.0 & -1.0 & -1.0 \end{bmatrix}^T \boldsymbol{\Gamma}_2 = \text{diag}\{2.0, 1.0, 2.0, 1.0, 2.0, 1.0\}$

$$\boldsymbol{\mu}_3 = \begin{bmatrix} 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \end{bmatrix}^T \quad \boldsymbol{\Gamma}_3 = \text{diag}\{2.0, 1.0, 2.0, 1.0, 2.0, 1.0\}$$

$$-N = 600, N_{\text{test}} = 10,000 \text{ and } N_{\text{run}} = 100$$

• Performance comparsion

method	L_1 test error	kernel number
Parzen window estimate	$(3.5195 \pm 0.1616) \times 10^{-5}$	600 ± 0
proposed SKD estimate	$(3.1134 \pm 0.5335) \times 10^{-5}$	9.4 ± 1.9

 \square A **unified regression framework** has been proposed

- applicable to supervised **regression** and **classification** problems
- as well as unsupervised **probability density function learning**
- $\hfill\square$ An efficient algorithm has been developed based on
 - **orthogonal least squares** forward selection procedure
 - incrementally minimises **leave-one-out** criterion coupled with **local regularisation**
 - **multiplicative nonnegative quadratic programming** for kernel density weights
- □ Proposed method is **computationally efficient**
 - capable of constructing very sparse kernel models with excellent generalisation capability

