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Outline

❏ Motivations and existing approaches for parsimonious

kernel data modelling

❏ The proposed unified data modelling approach for

✰ regression (supervised learning)

✰ classification (supervised learning)

✰ density estimation (unsupervised learning)

❏ Experimental investigation of the proposed approach

and comparison with some existing techniques
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Motivations

❏ In kernel data modelling, training data are all one has to build a model

❄ Yet objective of modelling from data is not that model simply fits

training data well

❄ Rather, goodness of a model is characterised by its generalisation

capability, interpretability and ease of knowledge extraction

❏ All depend crucially on ability to construct parsimonious models that

capture underlying data generating mechanism

❏ How to measure goodness of modelling process

✰ Generalisation performance

✰ Sparsity level or model size

✰ Computational efficiency of modelling process

http://www-mobile.ecs.soton.ac.uk
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Data Modelling Classes

❏ Supervised learning

✺ Regression: infer model f̂ : Rm → R that captures data generating

machanism f : Rm → R based on training data DN = {xk, yk}
N
k=1

generated from y = f(x) + e, e being observation noise

✺ Classification (two-class): infer classifier f̂ : Rm → {−1,+1} that

models data generating machanism f : Rm → {−1,+1} based on

training data DN = {xk, yk}
N
k=1, yk being class label for xk

❏ Unsupervised learning

✺ Probability density function estimation: infer estimate f̂ : Rm →

R+, based on training data DN = {xk}
N
k=1 drawn from unknown true

density f : Rm → R+

✺ Desired response for xk is unavailable, and this is constrained learn-

ing, as
∫

Rm f̂(u) du = 1

http://www-mobile.ecs.soton.ac.uk
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Overview of Existing Methods

❏ Sparse kernel modelling techniques, e.g. support vector machines

✰ From full kernel model, try to obtain sparse representation by making

many kernel weights to (near) zeros

✰ Robust and optimal; in practice, not as sparse as OLS approach, and

a few hyperparameters to tune

❏ Orthogonal-least-squares algorithm for forward selection,

✰ Use computationally efficient OLS to choose a small subset of signifi-

cant kernels one by one

✰ Suboptimal; in practice, much sparser models with equally good gen-

eralisation performance, and fewer hyperparameters to tune

❏ This work adopts OLS for forward selection based on leave-one-out test

criterion and local regularisation

http://www-mobile.ecs.soton.ac.uk
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Unified Data Modelling

❏ Placing a kernel on each training data xk and linearly combining all

model bases

ŷ(x) =
N

∑

k=1

βkKρ(x,xk)

❏ Adavantage is linear least squares solution readily available for weights

βk, but it is critically important to obtain sparse representation

❏ Gaussian kernel

Kρ(x, ck) =











e
−

‖x−ck‖2

2ρ2 , for regression and classification,

1

(2πρ2)m/2 e
−

‖x−ck‖2

2ρ2 , for density estimation,

❏ Kernel width ρ is usually not provided by modelling algorithm itself and

must be determined via cross validation
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Regression Modelling

❏ At a training point (xk, yk) ∈ DN , kernel model can be expressed as

yk = ŷk + ǫk =

N
∑

i=1

βiKρ(xk,xi) + ǫk = φ
T (k)β + ǫk

where ǫk = yk − ŷk is modelling error at xk, β = [β1 β2 · · ·βN ]T and

φ(k) = [Kk,1 Kk,2 · · ·Kk,N ]T with Kk,i = Kρ(xk,xi)

❏ By defining regression matrix

Φ = [φ1 φ2 · · ·φN ]

with φk = [K1,k K2,k · · ·KN,k]T for 1 ≤ k ≤ N , y = [y1 y2 · · · yN ]T and

ǫ = [ǫ1 ǫ2 · · · ǫN ]T , regression model over DN can be expressed as

y = Φβ + ǫ

❏ Note φk is k-th column of Φ, while φT (k) denotes k-th row of Φ

http://www-mobile.ecs.soton.ac.uk
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Orthogonal Decomposition

❏ Orthogonal decomposition of regression matrix: Φ = WA, where

A =















1 a1,2 · · · a1,N

0 1
. . .

...

...
. . .

. . . aN−1,N

0 · · · 0 1















W = [w1 w2 · · ·wN ] with orthogonal columns: wT
i wj = 0, if i 6= j

❏ Regression model can alternatively be expressed as y = Wg + ǫ,

where new weight vector g = [g1 g2 · · · gN ]T satisfies Aβ = g

❏ Space spanned by original bases φk is identical to space spanned by

orthogonal bases wk, and model is equivalently expressed by ŷk =

wT (k)g, where wT (k) = [wk,1 wk,2 · · ·wk,N ] is k-th row of W

http://www-mobile.ecs.soton.ac.uk
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Local Regularisation

❏ Regularised LS solution for g is obtained by minimising

JR(g,λ) = ǫ
T
ǫ +

N
∑

i=1

λig
2
i = ǫ

T
ǫ + g

T
Λg

❏ Hyperparameters λi specify prior distributions of g, and initially

λi are set to same small value (same flat distribution for each prior of gi)

❏ Evidence procedure is used to update regularisation parameters

λ
new
i =

γold
i

N − γold

ǫT ǫ

g2
i

, 1 ≤ i ≤ N

where gi for 1 ≤ i ≤ N denote current estimated parameter values, and

γ =

N
∑

i=1

γi with γi =
wT

i wi

λi + wT
i wi

❏ A few iterations (typically ≤ 10) are sufficient to find (near) optimal λ

http://www-mobile.ecs.soton.ac.uk
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Leave-One-Out Cross Validation

❏ Leave-one-out cross validation

✰ Remove k-th data from DN and use resultantDn\(xk, yk) to identify

a n-term model, denoting as f̂ (n,−k)

✰ Test error for this n-term model calculated on (xk, yk) not used in

training is

ǫ
(n,−k)
k = yk − f̂

(n,−k)(xk) = yk − ŷ
(n,−k)
k

✰ Repeat for 1 ≤ k ≤ N to obtain leave-one-out test mean square error

Jn =
1

N

N
∑

k=1

(

ǫ
(n,−k)
k

)2

which is a measure of n-term model’s generalisation performance

❏ No need to repeatedly remove a data point and identify corresponding

model

http://www-mobile.ecs.soton.ac.uk
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Leave-One-Out Model Selection

❏ It can be shown that leave-one-out test error is ǫ
(n,−k)
k = ǫ

(n)
k /η

(n)
k

✰ n-term modelling error ǫ
(n)
k can be expressed as

ǫ
(n)
k = ǫ

(n−1)
k − wk,ngn

where wk,n is k-th element of wn

✰ Leave-one-out error weighting η
(n)
k

η
(n)
k = η

(n−1)
k − w2

k,n

wT
n wn + λn

❏ At n-th stage of OLS selection procedure, n-th model term is selected

to minimise leave-one-out test mean square error Jn

❏ Selection procedure is automatically terminated when JNs+1 ≥ JNs ,

where Ns ≪ N , yielding Ns-term sparse model

http://www-mobile.ecs.soton.ac.uk
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Engine Data Set

❏ Modelling relationship between fuel rack position (input uk) and engine speed

(output yk) for a diesel engine operated at low engine speed

• Data set contained 410 samples with first 210 points for training and last 200

points for test

• This data set can be represented as yk = f(xk) + ek where ek denotes system

noise and xk = [yk−1 uk−1 uk−2]
T

• Optimal Gaussian kernel variance ρ2 = 1.69 was found empirically
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Engine Data Set (continue)

• Modelling accuracy for

the engine data set us-

ing proposed OLS and

SVM algorithms

algorithm model size training MSE test MSE

OLS 22 0.000453 0.000490

SVM 92 0.000447 0.000498

• Modelling for engine data set using OLS: (a) prediction ŷk (dashed) superim-

posed on system output yk (solid), and (b) prediction error ǫk = yk − ŷk
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Boston Housing Data Set

• Boston housing data set: a regression benchmark comprised 506 data

points with 14 variables

– Predict median house value from remaining 13 attributes

– 456 data points were randomly selected for training and remaining 50

data points were used to form test set

– Average results were given over 100 repetitions

– Optimal Gaussian kernel width was found via cross validation

• Modelling accuracy for Boston housing data set: Results were averaged

over 100 realizations and quoted as mean±standard deviation

algorithm model size training MSE test MSE

OLS 58.6 ± 11.3 12.9690 ± 2.6628 17.4157 ± 4.6670

SVM 243.2 ± 5.3 6.7986 ± 0.4444 23.1750 ± 9.0459

http://www-mobile.ecs.soton.ac.uk
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Kernel Classification

❏ Given training set DN = {xk, yk}
N
k=1, where xk ∈ Rm is pattern vector

and yk ∈ {−1,+1} is class label for xk ⇒ construct kernel classifier

ỹk = sgn (ŷk) with ŷk =
N

∑

i=1

βiKρ(xk,xi)

ỹk is estimated class label for xk, sgn(y) = −1 if y ≤ 0 and sgn(y) = +1

if y > 0

❏ Define modelling error ǫk = yk − ŷk ⇒ classification model over DN

can be expressed as: y = Φβ + ǫ

❏ Or equivalently in orthogonal regression model form: y = Wg+ǫ,

where all relevant notations are as defined for regression modelling

❏ Classifier construction has same regression modelling form, but

how good a classifier is is judged by its misclassification rate

http://www-mobile.ecs.soton.ac.uk
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Leave-One-Out Misclassification Rate

❏ Define leave-one-out signed decision variable: s
(n,−k)
k = ykŷ

(n,−k)
k ,

where ŷ
(n,−k)
k is test output of n-term model evaluated at k-th data

sample not used in training

❏ Leave-one-out misclassification rate can be computed as

Jn =
1

N

N
∑

k=1

Id

(

s
(n,−k)
k

)

indicator function Id(y) = 1 if y ≤ 0 and Id(y) = 0 if y > 0

❏ From leave-one-out n-term modelling error, it can be shown that leave-

one-out n-term signed decision variable is: s
(n,−k)
k = ψ

(n)
k /η

(n)
k

❏ Leave-one-out error weighting η
(n)
k can be computed recursively and

similarly

ψ
(n)
k = ψ

(n−1)
k + ykgnwk,n −

w2
k,n

wT
n wn + λn

http://www-mobile.ecs.soton.ac.uk
http://www.cercia.ac.uk/other/2007/ideal


17School of ECS, University of Southampton, UKIDEAL 2007

Breast Cancer Data Set

Average classification test error rate in % over 100 realizations

method test error rate model size

RBF-Network 27.64 ± 4.71 5

AdaBoost with RBF-Network 30.36 ± 4.73 5

LP-Reg-AdaBoost (-”-) 26.79 ± 6.08 5

QP-Reg-AdaBoost (-”-) 25.91 ± 4.61 5

AdaBoost-Reg (-”-) 26.51 ± 4.47 5

SVM with RBF-Kernel 26.04 ± 4.74 not available

Kernel Fisher Discriminant 24.77 ± 4.63 200

OLS 25.74 ± 5.00 6.0 ± 2.0

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

http://www-mobile.ecs.soton.ac.uk
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Diabetis Data Set

Average classification test error rate in % over 100 realizations

method test error rate model size

RBF-Network 24.29 ± 1.88 15

AdaBoost with RBF-Network 26.47 ± 2.29 15

LP-Reg-AdaBoost (-”-) 24.11 ± 1.90 15

QP-Reg-AdaBoost (-”-) 25.39 ± 2.20 15

AdaBoost-Reg (-”-) 23.79 ± 1.80 15

SVM with RBF-Kernel 23.53 ± 1.73 not available

Kernel Fisher Discriminant 23.21 ± 1.63 468

OLS 23.00 ± 1.70 6.0 ± 1.0

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

http://www-mobile.ecs.soton.ac.uk
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Kernel Density Estimation

❏ Parzen window estimate f̂(x; βPar, ρPar) can be regarded as “obser-

vation” of true density contaminated by “observation noise”

f̂(x; βPar, ρPar) = f(x) + ǫ̃(x)

❏ Kernel density estimation can be viewed as constrained regression

with Parzen window estimate as desired response

f̂(x; βPar, ρPar) =

N
∑

k=1

βkKρ(x,xk) + ǫ(x)

subject to constraints βk ≥ 0, 1 ≤ k ≤ N , and βT 1N = 1

❏ Define yk = f̂(xk; βPar, ρPar) and ǫk = ǫ(xk) ⇒ density estimation is

expressed as regression modelling: y = Φβ + ǫ , or alternatively:

y = Wg + ǫ

❏ Subject to nonnegative and unity constraints

http://www-mobile.ecs.soton.ac.uk
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Kernel Density Construction

❏ OLS sparse kernel regression modelling algorithm to select sparse

Ns-term subset model, where Ns ≪ N

• This determines structure of density estimate, containing Ns signifi-

cant kernels

❏ Multiplicative nonnegative quadratic programming to calculate

kernel weights

• Formally, task is to find βNs
for regression model

y = ΦNsβNs
+ ǫ

• Subject to nonnegative constraint

βi ≥ 0, 1 ≤ i ≤ Ns

and unity constraint

β
T
Ns

1Ns = 1

http://www-mobile.ecs.soton.ac.uk
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One-Dimensional Example

• Density to be estimated was mixture of Gaussian and Laplacian

p(x) =
1

2
√

2π
e
−

(x−2)2

2 +
0.7

4
e
−0.7|x+2|

– Number of training data points was N = 100, separate test data set

of Ntest = 10, 000 samples was used to calculate L1 test error

L1 =
1

Ntest

Ntest
∑

k=1

|p(xk) − p̂(xk; β, ρ)|

together with Kullback-Leibler divergence

KLD =

∫

Rm

p(x) log

(

p(x)

p̂(x; β, ρ)

)

dx

– Experiment was repeated Nrun = 100 times, optimal kernel widths

were found to be ρ = 0.54 and ρ = 1.1 empirically for Parzen window

estimate and proposed sparse kernel density estimate, respectively

http://www-mobile.ecs.soton.ac.uk
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One-Dimensional Example (continue)

• Performance comparsion

method L1 test error K-L divergence kernel no.

PWE (1.9963 ± 0.6179) × 10−2 (8.0003 ± 5.1662) × 10−2 100 ± 0

OLS (2.0213 ± 0.6535) × 10−2 (8.1419 ± 5.0102) × 10−2 5.1 ± 1.2

• A Parzen window estimate and a sparse kernel density estimate, in com-

parison with true density
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Six-Dimensional Example

• Density to be estimated was mixture of three Gaussian distributions

p(x) =
1

3

3
∑

i=1

1

(2π)6/2

1

det1/2 |Γi|
e
− 1

2
(x−µi)

T Γ−1
i (x−µi)

µ1 = [1.0 1.0 1.0 1.0 1.0 1.0]T Γ1 = diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0}

µ2 = [−1.0 −1.0 −1.0 −1.0 −1.0 −1.0]T Γ2 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}

µ3 = [0.0 0.0 0.0 0.0 0.0 0.0]T Γ3 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}

– N = 600, Ntest = 10, 000 and Nrun = 100

• Performance comparsion

method L1 test error kernel number

Parzen window estimate (3.5195 ± 0.1616) × 10−5 600 ± 0

proposed SKD estimate (3.1134 ± 0.5335) × 10−5 9.4 ± 1.9

http://www-mobile.ecs.soton.ac.uk
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Conclusions

❏ A unified regression framework has been proposed

• applicable to supervised regression and classification problems

• as well as unsupervised probability density function learning

❏ An efficient algorithm has been developed based on

• orthogonal least squares forward selection procedure

• incrementally minimises leave-one-out criterion coupled with local

regularisation

• multiplicative nonnegative quadratic programming for kernel

density weights

❏ Proposed method is computationally efficient

• capable of constructing very sparse kernel models with excellent gen-

eralisation capability
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