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Abstract: The effect of roundoff noise in a digital controller is analysed for a sampled-data system 
in which the digital controller is implemented in a state-space realisation. A new measure, called 
averaged roundoff noise gain, is derived. Unlike the traditionally used measure, where the analysis 
is performed based on an equivalent digital control system, this newly defined averaged roundoff 
noise gain allows one to take consideration of the inter-sample behaviour. It is shown that this 
measure is a function of the state-space realisation. Noting the fact that the state-space realisations 
of a digital controller are not unique, the problem of optimum controller structure is to identify 
those realisations that minimise the averaged roundoff noise gain subject to the 12-scaling 
constraint which is for preventing the signals in the controller from overflow. An analytical 
solution to the problem is presented and a design example is given. Both theoretical analysis and 
simulation results show that the optimum controller realisations obtained with the proposed 
approach are superior to those obtained with the traditional analysis based on a digital control 
system. 

1 Introduction 

A sampled-data system (see Fig. 1) consists of a 
continuous-time plant P(s) and a sampled-data controller 
which is composed of a sampler (A/D converter) S, the 
digital controller C,(z) to be designed and a hold (D/A 
converter) H. A digital controller is usually obtained by 
one of the following two ways: the first one is to design the 
controller in the continuous-time domain and then perform 
a digital implementation of the controller, while the second 
is to design the digital controller based on a discretised 
model of the plant. The designed digital controller has to 
be implemented with a digital device such as a digital 
control processor. Due to the finite word length (FWL) 
effects, the actually implemented controller is different 
from the designed one. Therefore, the actual performance 
of the system may be very different from the desired one. 
Generally speaking, there are two types of FWL errors in 
the digital controller. The first is perturbation of controller 
parameters implemented with FWL while the second is the 
rounding errors that occur in arithmetic operations. Typi- 
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cally, effects of these two types of errors are investigated 
separately. 

The effects of the first type of FWL errors are classically 
studied with a transfer function sensitivity measure. In [ 1, 
21, the analysis was performed based on the discrete-time 
counterpart of the sampled-data system. The correspond- 
ing sensitivity measure does not take the inter-sample 
behaviour into account. To overcoine this, Madievski 
et al. [3] derived a sensitivity measure based on a hybrid 
operator (transfer function) of the sampled-data system. 
The corresponding optimal realisation problem was made 
tractable with a two-step procedure: very fast sampling at a 
multiple of the sampling frequency followed by ‘blocking’ 
or ‘lifting’ to achieve a single-rate (discrete-time) system. 
The stability of the sampled-data system may be lost due to 
the FWL errors of the digital controller parameters, which 
are not considered when the digital controller is designed. 
Recently, the effects of the parameter errors have been 
investigated with some stability robustness related 
measures such as the one based on the complex stability 
radius [4, 51 and those based on pole sensitivity (see, e.g. 

The second type of FWL error is usually measured with 
the so-called roundoff noise gain. The effects of roundoff 
noise have been well studied in digital signal processing, 
particularly in digital filter implementation (see e.g. 
[Il-131). However, it was not until the late 1980s that 
the problem of optimal digital controller realisations mini- 
mising the roundoff noise gain was addressed. In [ 141, the 
‘optimal’ controller realisation was computed with the loop 
opened. This realisation is obviously not optimal in the 
sense that it does not minimise the roundoff noise in the 
closed-loop system. A roundoff noise gain was derived for 
a control system with state-estimate feedback controller 
and the corresponding optimal realisation problem was 
solved in [l]. The effect of FWL errors of the regulator 
parameter on the LQG performance was investigated in 
[15]. For the roundoff error effect on the same control 
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strategy, the optimal FWL-LQG design problem was 
studied and a sub-optimal solution was provided in [16], 
while the optimal solution was obtained by Liu et al. [ 171. 
It should be pointed out that a common feature of these 
results is that the plant is assumed to be in discrete-time 
form and hence so is the closed-loop. In most applications, 
the system is hybrid, i.e. the digital controller is used to 
control a continuous-time plant. Applying these results 
directly to such a sampled-data system implies neglecting 
the inter-sample system behaviour and particularly the 
inter-sample ripple, which may degrade the actual perfor- 
mance of the control system. The main objective in this 
paper is to investigate the effect of the roundoff noise in the 
digital controller and to identify the optimum controller 
realisations for a sampled-data system. 

2 Roundoff noise analysis 

Throughout the paper, a bold type symbol denotes a vector 
or matrix with appropriate dimension. It is well known that 
the digital controller C,(z) can be implemented with its 
state-space equations: 

(1) I xk+l = AX, + B u ~  
y/, = cxk + duk 

where uk = u(kT,), T, is the samplinng period, A E Rncxn', 
B E R ' " ~ ' ,  C ~ 7 2 ' ~ ~ ~  and d c R .  R=(A, B, C, d) is called 
a realisation of C,(z), satisfying 

C ~ ( Z )  = d + C(z1- A)-'B ( 2 )  

Denote Sc, as the set of all realisations (A, B, C, d). It 
should be pointed out that Sc,/ is an infinite set. In fact, if 

is 
characterised by 
Ro=(Ao, Bo, co, a&</, s ,={(A> B, c, 41 

A = T-'A,T, B = T-lB,, C = COT, (3) 

where T E Rncxnc is any non-singular matrix. Usually, such 
a T is called a similarity transformation. Once an initial 
realisation Ro is given, different controller realisations 
correspond to different similarity transformations T. 

It should be pointed out that the state-space model (1) is 
the digital controller implemented with infinite precision. 
Though there exist different state-space realisations, they 
yield exactly the same performance - the desired one. In 
practice, however, a designed digital controller has to be 
implemented with finite precision. Assuming a fixed-point 
implementation of digital controllers, then a more practical 
digital controller model is 

(4) I xX+i = AQ[xk*l+ BQ[uXI 
YX = CQ[xXI + dQ[uXI 

where Q[p] is the quantiser that rounds p to B, bits in 
fractional part. In this Section, we will investigate the 
effects of signal rounding off in the digital controller 
implemented with the model (4) on the output of the 
hybrid system depicted in Fig. 1, where P(s) denotes the 
continuous-time plant, u(t) is the continuous-time plant 
output, u k  is the input to the digital controller cd(z), Yk the 
digital controller output, v(t) is the continuous-time control 
signal and r(t)  is the reference control signal. 

Assume that H is a zero-order hold with the impulse 
response h(t). The control signal v(t) is given by 
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Fig. 1 Block-diagram of a sampled-data feedback system 
consisting of a continuous-time plant P(s) and a sampled-data 
controller with sampler S, digital controller C,(z) and hold H. 
Here u(t) denotes the continuous-time plant output, uk is the digital 
controller input, ylc the digital controller output, v(t) is the 
continuous-time control signal and r(t) the reference control signal 

The output of the closed-loop system is then 

u(t> = P(s>[r(t> + m1 
+m 

k=-m 
= m r ( 0  + P(s> c h(t - K l Y k  (6) 

Since e,(k) A y~ - Yk is not zero, the actual plant output, 
denoted as u*(t), of the hybrid system is different from the 
ideal one and the difference between the two is 

+m 

k=--03 

A Au(t) = u*(t) - u(t) = P(s) C h(t - kT,)e,(k) (7) 

One of the main objectives in this Section is to evaluate the 
output error variance of the sampled-data system due to 
rounding off in the controller. 

2.1 Derivation of averaged roundoff noise gain 
Denote 

E,(/<) - x X ,  t , , (k) 4 Q[u$l - @ (8) 

as the quantisation errors. Traditionally, these quantisation 
errors are modelled as statistically independent white 
sequences (see, e.g. [11, 121) and 

where E[.] denotes the ensemble average operator, the 
transposed operator, cri = 2-2Bv/ 12 and I is the identity 
matrix of proper dimension. It follows from (1) and (4) that 

] (10) 
e,(k + 1) = Ae,(k) + Be,,(k) + A E , ( ~ )  + B@) 

e,@) = Ce,(k) + de&) + CE&) + dt,,(k) 

where 

e,(k) = uz - u k ,  e,@) = XX - xk, ey(k) yX - Y k  (1 1) 

Noting that ulr is the discretised version of u(t), which is the 
output of the continuous-time plant P(s), it can be 
computed with the following well-known results. 

Theorem 1: Let x( t )  and y(t)  be the input and output of a 
continuous-time system F(s). Denote (Ap, B,, C,, d,) as a 
realisation of F(s), i.e. F(s) = d, + C,&I - As)-'Bs. 
Suppose that y(t) is sampled with a s a m p p g  frequency 
f = 1 IT,, then the discrete-time sequence yk = y(kT,) can be 
computed by 

IEE Proc.-Control Theory Appl., Vol. 149, No. 3, May 2002 



~ 

Corollary I :  If x( t )  = C;Zm h(t - kT,)xk, where h(t) is 
the response of the time-invariant zero-order hold H to the 
discrete-time unit impulse function dd(k): 

1, O l t < T ,  
0, otherwise h(t) = 

one has 

that is 

A 
ylr [d 4- c,(zI - A,)--'B,]X/~ zFd(z)xk (15) 

where 

T, 
z , B, = lo eA,$'Bsd7, C ,  = C , ,  d = d,, A == &TT 

(16) 

Suppose that the plant P(s) in Fig. 1 is a strictly proper 
transfer function, having a realisation (A,, , B,, C,)  such 
that P(s) = C,&J - A,)-'B,,. Let 

u,.(t) = P(s)r(t) (17) 

Noting u(t) = u,.(t) +P(s) CtZ-, h(t - nzTJy,,, it follows 
from (1 5) that 

U k  = 4 k T J  = u,(lcT,) + Pd(4Yk (18) 

where 

P ~ ( z )  = C,(ZI - AJ'B, (19) 

e l m  = M z ) e y ( k )  (20) 

with (A,, B,, C,) computed according to (1 6). This leads to 

Denote 

where vk is the state vector in (14) with yk = e,,(k) and 
xk = e,(k). With some manipulations, it can be shown that 

where 

Similarly, one has 

Remark 1: It is easy to see that A,i is the transition matrix 
of the digital control system depicted in Fig. 2. This is 
actually the discrete-time counterpart of the hybrid control 
system in Fig. 1. It was shown in [18] that the hybrid 
system is stable if and only if its discrete-time counterpart 
is stable. Therefore, H J z )  and H,(z)  are stable transfer 
functions. 

Since the quantisation errors E,(k) and E,(,%) are statisti- 
cally independent white sequences (see (9)), it follows that 
e,(k) and e,,(k) are wide-sense stationary sequences. Denote 

L(0 A E[e,(k)e,(k - 01 
as the autocorrelation function of e,(k) and T,(z) the 
corresponding spectral density function. According to the 
well known results in [19], one has 

ru(z) = H , ( ~ ) H ; ( Z - ' ) G ;  (25) 
and 

4 tr [ B z  W$ B,,] 06 (26) 

where tr[.] denotes the trace operator and Wt is the 
observability gramian of the realisation of H,(z) (see (24)): 

satisfying 

Remark 2: The expression given in (26) for the output error 
variance is based on the digital control system shown in 
Fig. 2, since the variance is evaluated at the sampling 
points. This means that the inter-sample behaviour of the 
output error is not taken into account. 

Looking at (7), one can see that the output error of the 
sampled-data system is the output of the plant excited via a 
zero-order hold H with an error sequence evaluated with 
the digital system (23), where the sampling frequency is 
f s  = 1 / T s .  Denote H(s) as the Laplace transform of h(t) 
defined in (1 3). It turns out that 

+03 

k=-cc  
AU(t> = c 4l(t - kT&(k) (28) 

Fig. 2 
system 

Block-diagram of the equivalent discrete-time feedback 
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where $(t)  is the impulse response of the continuous-time 
system P(s)H(s). Therefore, the output error variance of the 
sampled-data system is 

(29) 

with y,(l) = E[e,(m + l)e,(m)] the autocorrelation function 
o f  e,(k). 

Remark 3 

0 It is interesting to note that E [ ( A u ( ~ ) ) ~ ]  is a periodic 
function in t with period T,. 
0 y,(Z) can readily be evaluated and, since HJz) is stable, 
e,(Z) is a well-behaved sequence. 
0 When the plant is unstable, $(t)  is an unbounded 
sequence [Note 11. This is a serious problem for evaluating 
E [ ( A u ( ~ ) ) ~ ]  numerically. To overcome this problem we can 
replace the continuous time plan P(s) with its digital 
connterpart but with a much higher sampling frequency, 
denoted as f s =  l/ps, than A. which is used in digital 
controller. 

L e t z  = Nfs with N a large integer. It follows from (15) and 
(1 6) that 

} (30) 
V m y  = A& + B,Z,(m) 

Au(mT7) = C,v, 

where (A,, B,, c,) is given by (16) with Tv replaced with 
T, = T,/N and 

(31) 
A +O0 

q m )  = c e,,(k)v,(m - kN) 
k=-ffi 

with qlv(m) the (dismete-time) window function: 

Denote 2 as the shift operator, corresponding to 
sampling frequency &, and- E,@) the %transform of 
Zy(m), we then have E@) = c:Z-, i?y(m)Y-" = 
[(I - ZN)/(l - 5-')]Ey(2N), where EJz)  is the z-trans- 
form of e,(k) corresponding to the sampling frequency fs . 
According to (23), 

(33) 

with EJz) and E,(z) the z-transforms of E,(k) and ~ , ( k ) ,  
respectively. Therefore, the %transform of Au(mT,J is equal 
to 

where Pd(Z) is the discrete-time counterpart of P(s), 
obtained from (15) and (16) by substituting T, with 
T3 = TJN. This means that 

Note 1: Though 4(t) (that is, P(s)H(s)) may be unstable, Au(t) is a stable 
sequence since the sampled-data system is assumed stable. In fact, there is a 
pole-zero 'cancellation' between P(s)H(s) and Hy (z). 
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where i5x(m) and Z,(m) are defined in the same way as i?,(m) 
in (31). It follows from (9) that 

q N ( m  - kN)  

which is periodic in m with period equal to N. 

Theorem 2: Let w, be the output of a stable transfer 
function H$z) = HkzYk excited with a sequence E , .  
If E [ E ~  + l ~ m J  is a periodic function in m with a period N, so 
is E[w,+~w,]. Denote 

A 1 N-1 A 1 N - l  
Y,(O = E [ E ~ + ~ E L I ~  Y ~ ( O  = C ~[w,n+lwLI (37) 

m=O m=O 

Let r,(z) and r,(z) be their corresponding z-transforms. 
Then 

r,(z) = H(z)17,(z)HT(z-') (38) 

Proofi It follows from w, = Hlc~,-k that 

+oo +oo 
E [ w m + l w ~ l  k,=O k2=0 HklE[E(m-k2)+(l-kl  +k2)E&-k2)]Hk: 

(39) 

Clearly, it is periodic if E[E,,+~E;] is periodic. Based on the 
above equation, one has 

(38) follows by applying z-transformation to both sides of 
(40). 0 

Denote 

It can be shown that 

and that its %transform, denoted as I?,(?), is 

Let Tu@) be the %transform of 

1 Au((m + l)?,)Au(m?;.) 

(42) 

applying theorem 2 leads to 

N m=O m=O 

Similarly to (25) and (26), the averaged output error 
variance of the sampled-data system can be written as 

1 N-1 

m=O 
YJO) = E[{Au(m?,)}2] = tr[W]o; (44) 

IEE Proc-Control Theory Appl., Vol. 149, No. 3, May 2002 



where 

(45) 

The averaged roundoff noise gain, denoted as G, is defined 
as 

G=- A ? U ( O )  
4 

and therefore 

G = tr[W] (46) 

2.2 Realisation dependence 
Let (Ac/, Bel, Ccl,  De/) and (A:*, &, C% be two 
realisations of HJz) defined by (21) and (22), correspond- 
ing to the two digital controller realisations 

R A ( A ,  B? C ,  d )  

R, A (A,,, B,, c,, d )  

and 

that are related with (3), respectively. It can be shown that 

(47) 
It then turns out that 

H,(Z) = H:(z) (: :) 
where HE@) is independent of T, and hence 

T O  T O  
w = ( o  J T w o ( 0  1) 

where Wo is similar to \iir defined in (45) but corresponds 
to the controller realisation Ro . 

Let 

w q  w w12 Q )  
w2 1 

and 

have the same partition as 

(E !) 
It is easy to see that W =TTW,T, Q = Q o  and hence 

G = tr[TTW0T] + tr[Q,] (49) 

Remark 4: For the equivalent discrete-time feedback 
system shown in Fig. 2, the averaged roundoff noise 
gain, denoted was Gd, is defined by GdAE[ei(k)]/oi. It 
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follows from (26) that Gd = tr[BclWtBcl]. 
can show that 

Gd = tr[TTWiT] + tr[Q:] 

where W i  and Q t  are independent of T. 

Similarly, one 

(50) 

Clearly, the averaged roundoff noise gain G (or Gd) can 
be divided into two parts: one is a function of the controller 
realisation, and the other is a constant, having nothing to 
do with the controller structure. 

3 Dynamic range of states and optimal 
controller realisations 

On the one hand, G is a function of realisation and hence 
can be made as small as possible with 'small' T. The 
dynamic range of the states in (l), on the other hand, varies 
dramatically with realisations. From a practical point of 
view [Note 21, one wishes that all the states have the same 
dynamic range. To do so, the actually implemented realisa- 
tion must be scaled. 

The classical Z2-scaling on the states implies that the 
variance of each state is all equal to one when the input 
signal r(t) is a white noise with unit variance. Denote 
K%[xkx:] as the covariance matrix of the state vector 
of the controller, corresponding to realisation R. The 
&scaling (see, e.g. [11, 121) implies that the diagonal 
elements of K satisfy 

K(i, i) = 1, Vi  (51) 

Let us re-visit (18). According to Theorem 1, 
u,(lcT,,) = C,(zI - Az)-'slc, where 

T, 
sk  I,, eA.'B,r((k + l)T, - z)dz (52)  

Therefore, uk = c,(zI - AZ)-'(sk + Bzyk), which is equiva- 
lent to 

(53)  

Combining (53) with (l), one has 

This means that 

(55) 

Since r(t) is a white noise of unit variance, i.e. 
E[r(t + z)r(t)] = d(z). It follows from the expression (52) 
for s k  that 

that is 

(57) 

Note 2: For example, to avoid any overflow effect. 
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It is easy to see that, in the above equation, the term inside 
{.} is equal to zero for all k, except IC= 0 for which it is 
equal to B:eAT'. We then have 

y$(k )  E [ S k + m S i ]  

= j: eA~'BB,B~eAT'dzG,(k> 5 rod&) (58) 

which implies that s k  is a wide-sense stationary sequence 
and so is 

It follows that the latter has a power density function given 
by 

Denoting 

with I';I2 square root matrix of r0, one can see that 

where W, , called the controllability gramian correspond- 
ing to (Acl, BJ, satisfies 

*, = A,,W,A; + B,B,< (61) 
Let 

where K has the same dimension as that of A. It follows 
from (47) that 

that is 

K = T-'K0TdT (64) 
where KO is a positive-definite matrix independent of T, 
corresponding to the controller realisation Ro . 

The above equation means that for a given controller 
realisation, say Ro, the 12-scaling can be achieved by 
applying a diagonal transformation T d  = diag{ yl, . . . , 
V k , .  . . , y,,> with 

W k  = Jm, V k  

This transformation leads to an Z2-scaled realisation, 
denoted as RF, that has almost the same structure as Ro 
and can prevent the controller from overflow. But it is 
usually not the best one since it may have a very large 
averaged roundoff noise gain G. 

The optimum realisations of the digital controller to the 
hybrid system depicted in Fig. 1 are the solutions to the 
following minimisation problem: 

min G (65) 
R E sc,, 

In the next Section, we will discuss how to compute the 
newly derived measure G and hence to solve for the 
optimum realisation problem (65). 

subject to (51) 
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4 Computing optimal realisations 

The l2 dynamic range constraint (51) defines a set of 
controller realisations, denoted as SF,, in which each 
realisation satisfies 

(66) 

Noting the fact that tr[Qo] is independent of T, the 
optimum controller realisation problem under 12-scaling 
constraint can be specified as 

(T-'KOT-T)(i, i) = 1, for i = 1,2,  . . . , n, 

min tr [ TT WoT] 
T:det(T)#O 

subject to (66) 

This problem was solved for independently in [ l l ,  121. In 
what follows, we present an alternative approach to solve 
the optimisation problem (67) and provide an analytical 
solution. 

Lemma 1: Let KO 2 0 be a given n, x n, matrix and 
T = T l V  a non-singular matrix of the same dimension, 
where V is an orthogonal matrix. There exists a T such that 
(66) holds if an only if 

tr[T;'KoT;T] = n, (68) 

€'roo8 The necessary condition is obvious, and we prove 
the sufficient condition. B a singular value decomposition 
(SVD), T I 'KoTIT=  VOZVO, where Z = diag(o1,. . . , 
crac> ? 0 and VO is some orthogonal matrix. So, 
T-lKOT-T= aTxo with = VOV Using the numerical 
algorithm given in [12], one can find a such that aTZV 
has its diagonal elements all equal to one, which means 

P 

v = v;T? 0 

min tr [T WoTI ] (69) 

With Lemma 1, (67) can be rewritten as 

T, :det(T,)#O 
n,=tr[T;' KaTFT] 

This problem can be solved for using the Lagrange multi- 
plier method. Noting tr[TrWoT1] = tr[WoP1] and 
tr[TI'KOTIT] = tr[KoPT1], where 

P,LT,TT 
we define the Lagrangian 

L(P,, A) tr[WOPl] + A(tr[K,P;'] - n,) (70) 

The optimal P1 should satisfy aL/aPI = 0 and aL/aA, = 0, 
which leads to 

(71) I W0 = AP;'KoPT' 
n, = tr[K,P;'] 

The first equation of (71) implies A > 0 and can be 
rewritten as 

which suggests that 3L'/2Kh'2P;1Kh/2 is a square root matrix 
of Kh/2WoKA'2. Since the latter is a positive-definite 
matrix, its square root matrix is unique. Therefore 

(73) (KA/2W K'l2 112 = ;11/2KA/2p;lK,!,/2 
0 0 )  

which leads to 

(74) p - A'/2K'/2 K'l2W K1l2 -'/2K'/2 
1 -  o ( 0  0 0 )  0 
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With the second equation of (71), one has 

Therefore 

(76) 
As a summary, we then have the following theorem: 

Theorem 3: The solutions to (67) are characterised by 

Topt = P;l2V (77) 

where P I  is given by (76) and V is any orthogonal matrix 
such that the diagonal elements of VTP, 1/2KoP,'/2V are all 
equal to one; the minimum of the averaged roundoff power 
gain with l2 scaling is equal to 

(5 Ok)' 

+ tr[Qol (78) 
k= 1 

Gmijt = 
n, 

where {a;} is the eigenvalues set of KoWo. 

Prooj First of all, all the solutions to (67) belong to 
the similarity transformation set defined by (77). It is 
easy to verify that, with Top, l/given by $77), 

This means that Top, defined in (77) is actually the 
complete solution set of (67). Noting the fact that 
Kh'2WoKh" and WoKo have the same eigenvalues, (78) 
follows. 0 

With such a Topt and the given initial realisation Ro, one 
can obtain an optimal controller realisation of the sampled- 
data system, denoted as Rupt, using (3). 

It is easy to understand that the roundoff noise gain Gd 
of the digital closed-loop system can be minimised and the 
corresponding optimal transformations can be obtained in 
the same way. The optimal controller realisations so 
obtained are denoted as Rfpt [Note 31. Compared with 
Rapt, R$ is 'locally' optimal since Gd is a measure that 
does not take into account the inter-sample behaviour of 
the sampled-data system. 

tr[T$tWOTopt] =tr[P?2W0Pi'2] =(tr[(KO WOKO 1/2 ) I2 I) /nc. 

5 Design example 

We now present a design example to illustrate the design 
procedure. The transfer function of the plant is 

1 . 6 1 8 8 ~ ~  - 0.157% - 43.9425 
P(s) = 

s5 + 1 . 1 7 3 6 ~ ~  + 28 .0737~~  + 2 7 . 9 1 8 7 ~ ~  + 0.0186s 
A stabilising (continuous-time) controller CJs) is designed 
and the transfer function is 

0 . 0 4 6 ~ ~  + 1 .5862s5 + 3 . 0 9 ~ ~  + 4 4 . 3 ~ ~  

s6 + 3 . 7 6 6 ~ ~  + 34 .9509~~  + 1 0 6 . 2 ~ ~  
+42.7785s2 + 0.02867s + 1.58 x 

CAS) = 

+ 1 7 9 . 2 ~ ~  + 166.43s + 0.0033 
With fs = 1 Hz, we obtained the discretised plant Pd(z) 

and controller Cd(z), both are presented with their control- 

Note 3:  R$ are different from the classical optimal realisations which are 
obtained by minimising Gd with the constraint &(i, i) = 1, Vi, where Kd is 
similar to the K matrix but corresponding to the equivalent digital control 
system. 
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lable realisations, denoted as R, and R,, respectively. R, is 
given by 

13.3555 -4.9154 4.0734 -1.8227 0.3093) 

0 
0 : 1  I 0 0 0 1 

1 0 0 0 
0 1 0 0 
0 0 1 0 

B, = 0 i"1 
C,  = (-0.1183 -0.7249 0.6878 -0.6510 -0.0425) 

R, is given by 

A, = 

2.1016 -2.2306 1.4467 -0.4901 0.1954 -0.0231 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 

/ l \  

B c = [ J  

c, = 

(0.1971 -0.7401 1.1527 -1.0041 0.4857 -0.0912), 
d, = 0.0460 

We point out that the coefficients of P&) and Cd(z) are 
presented in FORMAT SHORT (MATLAB) and hence only 
the first four significant digits in fractional part of each 
parameter are displayed. In the sequel, the FORMAT 
SHORT display is assumed. The poles of the ideal 
closed-loop system and the corresponding absolute 
values can be computed and they are all inside the unit 
circle. Clearly, this digital closed-loop system is stable and 
hence so is the sampled-data system. 

With R, as the initial digital controller realisation and 
N =  11 1 in (45), we compute the corresponding KO, Wo 
and W;, based on which three 12-scaled controller realisa- 
tions RZ.", Rfp, and R,, are obtained, where RY is obtained 
from R, with a diagonal transformation, RZpf and Rapt, as 
defined before, are the optimal realisations that minimise 
Gd and G, respectively. Table I shows the averaged round- 
off noise gain of each realisation. The results in Table 1 are 
self-explanatory. Both the Rtpt and R,, yield a much 
smaller averaged roundoff noise gain than RF. Comparing 

Table 1: Comparison of the averaged roundoff noise 
gains for the three 12-scaled realisations 

Realisation RF RZPt Ropt 

G 8.7344 x IOl3 5.0269 x IO6 4.1116 x IO6 
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the optimum realisation Ropr with R&, one can see that the 
averaged roundoff noise gain of the former is about 80% of 
the latter. 

Though it is very hard to compute the averaged roundoff 
noise gain (see (44)-(46)) with simulation data, it is 
expected that Ropt or Rtpt should have a much smaller 
output error variance than R;,‘. Also R,, should have a 
smaller output error variance than Rtpt. To confirm these, 
some simulations have been conducted. In Fig. 1, the input 
signal r(t) is replaced with a white sequence of 100 000 
points, generated with unit variance using the command 
randn in MATLAB. The continuous-time plant is replaced 
with its discrete-time counterpart obtained using fast 
sampling (h = 10h. = 10 Hz). The digital controller is 
implemented with (4), where the quantiser Q [ p ]  rounds 
the fractional part of signal p into 16 bits. The variance of 
the error sequence between the ideal output and the actual 
one of the sampled-data system for each of the three 
controller realisations is computed with the same input 
se uence. For RS,C, the variance is 3.2708 x lo6, while for 
R,,,. and Rapt, we have 8.1846 and 6.23 18, respectively. 

Fig. 3 shows the unit-step responses of the sampled-data 
system, where the solid line is for the ideal response, while 
the dashed and the dotted lines are for 16-bit implemented 
Ropt and RF, respectively. Clearly, the response corre- 
sponding to RF is far away from the desired one, while 
the one corresponding to Rapt is very close to the ideal 
response. Fig. 4 compares the ideal unit-step response of 
the sampled-data system with those of 16-bit implemented 
Rapt and Rfpt, respectively. It can just be seen visually that 
the output error for R$,t is larger than that for Rapt. 

B 

6 Conclusions 

We have addressed the optimum digital controller structure 
problem in a hybrid system with roundoff noise considera- 
tion. Our contribution has been threefold. The first one is to 
have given a thorough analysis of the effect of roundoff 
noise in the digital controller on the output of the system. 
Based on this analysis, a new measure has been proposed. 
This measure, unlike the existing ones, is derived for the 

the ideal response 
- - - Ropr implemented with 16 bits 

RgC implemented with 16 bits -1 500 
-2000 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
a 

10 r I I I r I i I I  

-40 
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

b 
( X  io4) 

Fig. 3 Unit-step responses of the sampled-data system (x-axis in 
second) 
Note that in the first 10000 seconds (a), with the given y-axis range, 
the differences for the ideal response and that of R,,,, implemented with 
16 bits cannot visually be seen 
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( ~ 1 0 ~ )  
b 

Fig. 4 Unit-step responses ofthe sampled-data system (x-axis in 
second) 
Note that in the first 10000 seconds (a), with the given y-axis range, 
the differences for the three responses cannot visually be seen 

hybrid system rather than its discrete-time counterpart and 
hence can take the inter-sample behaviour into account. 
The second contribution is to have given a method to 
evaluate this measure by fast sampling plant, which can 
avoid the numerical problem involved in computing 
directly the newly defined measure. The exact expression 
for the covariance matrix of controller state vector has also 
been derived in order to scale the realisations with 12 norm. 
It is shown that the proposed new measure is controller 
realisation dependent, and the third contribution of this 
paper is to have presented an analytical solution to the 
optimum controller structure problem. A design example 
has been given to illustrate the design procedure and to 
confirm the theoretical results. 
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