WCCI 2006 Presentation

Construction of RBF Classifiers with Tunable Units Using Orthogonal Forward Selection Based on Leave-One-Out Misclassification Rate

S. Chen^{\dagger}, X. Hong^{\ddagger} and C.J. Harris^{\dagger}

[†] School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK

[‡] Department of Cybernetics, University of Reading, RG6 6AY, UK

- \square The proposed RBF classifier construction method.
- Experimental investigation of the proposed method and comparison with some existing techniques.

- □ Nonlinear optimisation approach: Optimise all parameters (centre vectors, node variances or covariance matrices, weights)
 - ☆ Very "sparse" (small size)
 - \checkmark All problems associated with nonlinear optimisation
- □ Linear optimisation approach: Fix centres to training input data, and seek a "linear" subset model
 - O Orthogonal least squares forward selection
 - \clubsuit Sparse, good performance, and efficient construction
 - \checkmark Need to specify RBF variance (via cross validation)
 - **O** Kernel modelling methods
 - \checkmark Sparse (though not as sparse as OLS), good performance
 - \Rightarrow Need to specify RBF variance and other kernel hyperparameters (via costly cross validation)

Motivations

- ☐ How good a RBF classifier method:
 - \Rightarrow Generalisation performance
 - \Rightarrow Sparsity level or classifier's size
 - \checkmark Efficiency of classifier construction process
- □ Combine best of both nonlinear and linear approaches
 - → Keep OLS selection procedure to pick RBF units one by one
 → Retain efficiency of OLS construction process
 - **O** But each RBF unit is optimised via nonlinear optimisation
 - ☆ Determine centre vector and covariance matrix by directly optimising generalisation capability: leave-one-out misclassification rate
 - \Rightarrow This nonlinear optimisation carried out by a simple yet efficient global search method: repeated weighted boosting search

□ Given training set $\{(\mathbf{x}_k, y_k)\}_{k=1}^N$, where $y_k \in \{-1, +1\}$ is class label for *m*-dimensional pattern vector \mathbf{x}_k , construct RBF classifier

$$\tilde{y}_k = \operatorname{sgn}(\hat{y}_k) \text{ with } \hat{y}_k = f_{\operatorname{RBF}}^{(M)}(\mathbf{x}_k) = \sum_{i=1}^M w_i g_i(\mathbf{x}_k),$$

where \tilde{y}_k is estimated class label for \mathbf{x}_k , $f_{\text{RBF}}^{(M)}(\bullet)$ denotes RBF classifier with M units, and sgn(y) = -1 if $y \leq 0$, sgn(y) = +1 if y > 0

□ We consider general tunable RBF unit of form

$$g_i(\mathbf{x}) = K\left(\sqrt{\left(\mathbf{x} - \boldsymbol{\mu}_i\right)^T \boldsymbol{\Sigma}_i^{-1} \left(\mathbf{x} - \boldsymbol{\mu}_i\right)}\right)$$

where μ_i is centre vector of the *i*th RBF unit, whose diagonal covariance matrix is $\Sigma_i = \text{diag}\{\sigma_{i,1}^2, \dots, \sigma_{i,m}^2\}$, and $K(\bullet)$ is basis function

WCCI 2006

RBF Model

□ Regression model of RBF classifier

$$y_k = \hat{y}_k + e_k = \mathbf{g}^T(k)\mathbf{w} + e_k$$

where $\mathbf{w} = [w_1 \ w_2 \cdots w_M]^T$ and $\mathbf{g}(k) = [g_1(\mathbf{x}_k) \ g_2(\mathbf{x}_k) \cdots g_M(\mathbf{x}_k)]^T$
Define $\mathbf{v} = [y_1 \ y_2 \cdots y_N]^T$, $\mathbf{e} = [e_1 \ e_2 \cdots e_N]^T$, and $\mathbf{G} = [\mathbf{g}_1 \ \mathbf{g}_2 \cdots \mathbf{g}_N]^T$

 $\Box \text{ Define } \mathbf{y} = [y_1 \ y_2 \cdots y_N]^T, \ \mathbf{e} = [e_1 \ e_2 \cdots e_N]^T, \text{ and } \mathbf{G} = [\mathbf{g}_1 \ \mathbf{g}_2 \cdots \mathbf{g}_M]$ with $\mathbf{g}_k = [g_k(\mathbf{x}_1) \ g_k(\mathbf{x}_2) \cdots g_k(\mathbf{x}_N)]^T, \ 1 \le k \le M$

□ Regression model over training data set:

$$\mathbf{y} = \mathbf{G}\mathbf{w} + \mathbf{e}$$

Note that \mathbf{g}_k denotes kth column of \mathbf{G} while $\mathbf{g}^T(k)$ is kth row of \mathbf{G} \Box Let an orthogonal decomposition of regression matrix \mathbf{G} be $\mathbf{G} = \mathbf{PA}$. Then RBF model can alternatively be expressed

$$\mathbf{y} = \mathbf{P}\boldsymbol{\theta} + \mathbf{e}$$

- □ Weight vector $\boldsymbol{\theta} = [\theta_1 \ \theta_2 \cdots \theta_M]^T$ in orthogonal space $\mathbf{P} = [\mathbf{p}_1 \ \mathbf{p}_2 \cdots \mathbf{p}_M]$ satisfies triangular system $\mathbf{A}\mathbf{w} = \boldsymbol{\theta}$, where \mathbf{A} is upper triangular
- □ RBF model output is equivalently expressed in orthogonal space as

$$\hat{y}_k = \mathbf{p}^T(k)\boldsymbol{\theta}$$

where $\mathbf{p}^T(k) = [p_1(k) \ p_2(k) \cdots p_M(k)]$ is kth row of **P**.

□ Define signed decision variable

$$s_k = \operatorname{sgn}(y_k)\hat{y}_k = y_k\hat{y}_k = y_k f_{\operatorname{RBF}}^{(M)}(\mathbf{x}_k)$$

 \Box Then misclassification rate over $\{(\mathbf{x}_k, y_k)\}_{k=1}^N$ is

$$\mathcal{M}_{r} = \frac{1}{N} \sum_{k=1}^{N} \mathcal{I}_{d}(s_{k}) \text{ where } \mathcal{I}_{d}(y) = \begin{cases} 1, & y \leq 0\\ 0, & y > 0 \end{cases}$$

- □ Denote kth modelling error of n-unit RBF classifier, identified using the entire $\{(\mathbf{x}_k, y_k)\}_{k=1}^N$, as $e_k^{(n)} = y_k f_{\text{RBF}}^{(n)}(\mathbf{x}_k) = y_k \hat{y}_k^{(n)}$
- □ Let $f_{\text{RBF}}^{(n,-k)}(\bullet)$ be *n*-unit RBF classifier identified using $\{(\mathbf{x}_k, y_k)\}_{k=1}^N$ but with its *k*th data point being removed
- □ Test output of this *n*-unit RBF classifier at *k*th data point not used in training is computed by $\hat{y}_k^{(n,-k)} = f_{\text{RBF}}^{(n,-k)}(\mathbf{x}_k)$

Leave-one-out signed decision variable is defined by

$$s_k^{(n,-k)} = y_k \hat{y}_k^{(n,-k)}$$

□ Leave-one-out misclassification rate is computed by

$$J_n = \frac{1}{N} \sum_{k=1}^{N} \mathcal{I}_d\left(s_k^{(n,-k)}\right)$$

- \square LOO misclassification rate J_n is a measure of classifier's generalisation capability
- \Box J_n can be computed efficiently, as owing to orthogonal decomposition we have

$$s_k^{(n,-k)} = \frac{\phi_k^{(n)}}{\eta_k^{(n)}}$$

with

$$\phi_k^{(n)} = \phi_k^{(n-1)} + y_k \,\theta_n \, p_n(k) - \frac{p_n^2(k)}{\mathbf{p}_n^T \mathbf{p}_n + \lambda}$$

and

$$\eta_k^{(n)} = \eta_k^{(n-1)} - \frac{p_n^2(k)}{\mathbf{p}_n^T \mathbf{p}_n + \lambda}$$

 \Box Proposed algorithm constructs RBF units one by one by minimising J_n

 \square At *n*th construction stage, determine *n*th RBF unit by minimising J_n

$$\min_{\boldsymbol{\mu}_n,\boldsymbol{\Sigma}_n} J_n\left(\boldsymbol{\mu}_n,\boldsymbol{\Sigma}_n\right)$$

□ Construction procedure is automatically terminated when

 $J_M \leq J_{M+1}$

yielding M-term RBF classifier

- □ Note that LOO criterion J_n is at least locally convex, and there exists an "optimal" M such that: for $n \leq M J_n$ decreases as model size n increases while the above condition holds
- □ Nonlinear optimisation is performed using a simple yet efficient global search algorithm called repeated weighted boosting search

Synthetic Two-Class Problem

B.D. Ripley, *Pattern Recognition and Neural Networks*. Cambridge: Cambridge University Press, 1996. http://www.stats.ox.ac.uk/PRNN/

Breast Cancer Data Set

method	test error rate	model size
RBF-Network	27.64 ± 4.71	5
AdaBoost with RBF-Network	30.36 ± 4.73	5
LP-Reg-AdaBoost (-"-)	26.79 ± 6.08	5
QP-Reg-AdaBoost $(-"-)$	25.91 ± 4.61	5
AdaBoost-Reg (-"-)	26.51 ± 4.47	5
SVM with RBF-Kernel	26.04 ± 4.74	not available
Kernel Fisher Discriminant	24.77 ± 4.63	not available
Proposed	24.49 ± 3.28	3.1 ± 1.2

Average classification test error rate in % over 100 realizations

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

Diabetis Data Set

Trenage chapsing ation test circlinate in 70 over 100 realizations		
method	test error rate	model size
RBF-Network	24.29 ± 1.88	15
AdaBoost with RBF-Network	26.47 ± 2.29	15
LP-Reg-AdaBoost (-"-)	24.11 ± 1.90	15
QP-Reg-AdaBoost $(-"-)$	25.39 ± 2.20	15
AdaBoost-Reg (-"-)	23.79 ± 1.80	15
SVM with RBF-Kernel	23.53 ± 1.73	not available
Kernel Fisher Discriminant	23.21 ± 1.63	not available
Proposed	22.16 ± 1.47	4.0 ± 1.6

Average classification test error rate in % over 100 realizations

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

Thyroid Data Set

method	test error rate	model size
RBF-Network	4.52 ± 2.12	8
AdaBoost with RBF-Network	4.40 ± 2.18	8
LP-Reg-AdaBoost (-"-)	4.59 ± 2.22	8
QP-Reg-AdaBoost $(-"-)$	4.35 ± 2.18	8
AdaBoost-Reg (-"-)	4.55 ± 2.19	8
SVM with RBF-Kernel	4.80 ± 2.19	not available
Kernel Fisher Discriminant	4.20 ± 2.07	not available
Proposed	3.21 ± 1.35	3.9 ± 0.8

Average classification test error rate in % over 100 realizations

Data and first 7 results from:

http://ida.first.fhg.de/projects/bench/benchmarks.htm

- □ A novel construction algorithm has been proposed for RBF classifiers with tunable units
 - ☆ Each RBF unit has individually adjusted centre and diagonal covariance matrix
 - ☆ RBF units are selected in a computationally efficient orthogonal forward selection procedure
 - ☆ Each RBF unit is optimised by minimising leave-one-out misclassification rate, a measure of generalisation capability
- Several examples have shown that proposed method compares favourably with existing state-of-the-art

THANK YOU.

S. Chen wish to thank the support of the United Kingdom Royal Academy of Engineering

