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Abstract— A novel probability density function (PDF) esti-
mation based over-sampling approach is proposed for two-
class imbalanced classification problems. The Parzen-window
kernel function is applied to estimate the PDF of the pos-
itive class, from which synthetic instances are generated as
additional training data to re-balance the class distribution.
Utilising the re-balanced over-sampled training data, a radial
basis function (RBF) classifier is constructed by applying
an orthogonal forward regression, in which the classifier’s
structure and the parameters of RBF kernels are determined
using a particle swarm optimisation algorithm based on the
criterion of minimising the leave-one-out misclassification rate.
The effectiveness of the proposed approach is demonstrated by
an empirical study on several imbalanced data sets.

I. INTRODUCTION

Two-class imbalanced classification problems, in which

the instances of one class outnumbers the instances of the

other class, widely arise in life threatening or safety critical

and many other real-world applications [1]–[6]. The imbal-

ance between two classes is problematic for many standard

classification algorithms [7]–[11], whose performance deteri-

orate as class imbalance degree increases, or equivalently as

the data samples of minority or positive class become sparser

[9]. For example, kernel-based methods, which are regarded

as robust classifiers [12], construct a decision hyperplane

separating the two classes. Without special countermeasure

for imbalance in the training data, the resultant hyperplane

will tend to be placed in favour of classification performance

for the majority or negative class, but the classification

performance for the positive class becomes unsatisfactory.

Techniques for tackling the imbalanced problem can be

categorised into two categories: resampling methods and

imbalanced learning algorithms.

Imbalanced learning algorithms are obtained by modifying

existing learning algorithms internally so that they can deal

with imbalanced problems effectively, without ‘artificially’

altering or re-balancing the original imbalanced data set. For

example, the kernel classifier construction can be modified,

in order to cope with the imbalanced distribution during

the classifier construction process [11], [13]. A well-known
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radial basis function (RBF) modelling approach is the two

staged procedure [14], in which the RBF centres are first

determined using κ-means clustering [15] and the RBF

weights are then obtained using the least squares estimate

(LSE). To cope with imbalanced data sets, a natural extension

of [14] is to modify the latter stage as the weighted LSE

(WLSE), where the same weighted cost function of [13]

is used. This κ-means+WLSE algorithm provides a viable

technique for this category of imbalanced learning.

Resampling methods are external as they operate on the

original imbalanced data set, aiming to provide a re-balanced

input to train a conventional classifier. There have been

many studies [16]–[22] focusing on this simple yet effective

methodology to combine with the conventional classifiers for

the rebalanced data set. Clearly the ultimate classification

performance will be dependent on the adopted resampling

strategy as well as the choice of classifier. In terms of

classifier development, recently, the particle swarm optimisa-

tion (PSO) algorithm [23] has been applied to minimise the

leave-one-out (LOO) misclassification rate in the orthogonal

forward selection (OFS) construction of a tunable RBF

classifier [24]. The tunable RBF modelling advocated in [24]

offers significant advantages over many existing kernel or

RBF classifier construction algorithms, in terms of better

generalisation performance and smaller classifier size as well

as lower complexity in the learning process. Resampling

methods can be divided into the two basic categories, under-

sampling and over-sampling.

Various under-sampling techniques have been proposed in

the literature [3], [18]–[20], [25]–[31]. Under-sampling tends

to be an ideal option when the imbalance degree is not very

severe. However, as pointed out in [32], the use of over-

sampling is necessary when the imbalance degree is high.

Random over-sampling is a simple yet competitive method

[9], [25], but it suffers from a serious problem of over-fitting.

The study [21] proposed a synthetic minority over-sampling

technique (SMOTE), which enhances the significance of

some specific regions in the feature space by over-sampling

the positive class. Although SMOTE is a well acknowledged

technique, it has some drawbacks, including over generalisa-

tion and high variance [33]. Some improved SMOTE meth-

ods, such as SMOTEBoost [22], were proposed to alleviate

the limitations of SMOTE. Despite the empirical evidences

that the foregoing methods have been effective in improving

the classification performance for positive class, the reason

behind the success of the oversampling approaches, such as

SMOTE, is not fully understood, as there are little theoretical



studies that justify most of the oversampling methods.

An ideal oversampling technique should generate synthetic

data according to the same probability distribution which

produces the observed positive-class data samples. We pro-

pose an oversampling approach based on the Parzen window

(PW) or kernel density estimation [34], [35] from positive-

class data samples. According to the estimated probability

density function (PDF), synthetic instances are generated as

the additional training data. Th RBF classifier proposed in

[24] is then applied to the rebalanced data set, to complete

the classification process. The significance of the proposed

method is twofold. Firstly, the proposed oversampling tech-

nique generates synthetic instances with better quality than

the existing oversampling methods. Secondly, the PSO-OFS

based RBF classifier, with its structure and parameters deter-

mined using a PSO algorithm based on minimising the LOO

misclassification rate in the efficient OFS procedure, has been

shown to outperform many existing classifiers [24].

II. PDF ESTIMATION BASED OVER-SAMPLING

Consider the two-class data set given as

DN = {xk, yk}
N
k=1 = DN+

⋃

DN
−

= {xi, yi = +1}
N+

i=1

⋃

{xl, yl = −1}
N
−

l=1 (1)

where yk ∈ {±1} denotes the class label for the feature

vector xk ∈ R
m, N = N+ + N− is the total number of

instances, while there are N+ positive-class instances and

N− negative-class instances, respectively, with N+ ≪ N−.

The samples xk are generated independently and identically

from the unknown underlying PDF.

Kernel density estimation for positive class: Denote the

unknown PDF that generates the positive-class sample set

DN+
by p(x). A kernel-based density estimator p̂(x) for

p(x) based on DN+
= {xi, yi = +1}

N+

i=1 is defined by

p̂(x) =
1

N+

N+
∑

i=1

Φσ(x − xi) (2)

where σ is the smoothing parameter, and Φσ(x− xi) is the

kernel function with the training instance xi as its centre,

scaled by σ. The normal kernel scaled by a single σ is often

chosen as kernel function [36]

Φσ(x − xi) =
σ−m

(2π)m/2
e−

1
2
σ−2(x−xi)

T(x−xi) (3)

which implies that all the dimensions of the feature space are

uncorrelated and have the same spread. To obtain a better

PDF estimate for the positive class, the following kernel-

based PDF estimate involving the covariance matrix S of

the positive class is adopted in this paper

p̂(x) =
(detS)−1/2

N+

N+
∑

i=1

Φσ

(

S−1/2(x − xi)
)

(4)

where

Φσ

(

S−1/2(x − xi)
)

=
σ−m

(2π)m/2
e−

1
2
σ−2(x−xi)

T
S
−1(x−xi)

in which S is an unbiased estimate of the positive-class

covariance given by

S =
1

N+ − 1

N+
∑

i=1

(xi − x̄)(xi − x̄)T (5)

with x̄ = 1
N+

N+
∑

i=1

xi being the mean vector of the positive

class. The inclusion of S in (4) is to account for the

coordinates of the feature space being correlated and the

spreads of the coordinates being different.

The most tractable global measure of the discrepancy of

p̂(x) from the true density p(x) is the mean integrated square

error (MISE), based on which the value of σ can be found

by minimising the score function M(σ) [35]

M(σ) = N−2
+

∑

i

∑

j

Φ∗
σ

(

S−1/2(xj − xi)
)

+ 2N−1
+ Φσ(0)

(6)

where Φ∗
σ

(

S−1/2(xj − xi)
)

≈ Φ
(2)
σ

(

S−1/2(xj − xi)
)

−2Φσ

(

S−1/2(xj − xi)
)

, in which Φ
(2)
σ

(

S−1/2(xj − xi)
)

is given by Φ
(2)
σ

(

S−1/2(xj − xi)
)

= (
√

2σ)−m

(2π)m/2

e−
1
2
(
√

2σ)−2(xj−xi)
T
S
−1(xj−xi). The optimal σ can be

found by a grid search.

Over-sampling based on a kernel density estimator: Over-

sampling on the positive class is performed by drawing data

samples according to the PDF estimate p̂(x) in (4), estimated

based on the given training data set DN+
. Each synthetic

sample is generated by the two following steps:

1) Based on the discrete uniform distribution, randomly draw

a data sample, xo, from the positive-class data set.

2) Generate a synthetic data sample, xn, using the Gaussian

distribution with xo as the mean and σ2S as the covariance

matrix.

In Step 2), the synthetic sample xn can be generated as

xn = xo + σR · randn() (7)

where R is the upper triangular matrix that is the Cholesky

decomposition of S, and randn() is the m-dimensional

pseudorandom vector drawn from the zero-mean normal

distribution with the m-dimensional identity matrix Im as its

covariance matrix. In order to generate the required amount

of synthetic samples specified by the oversampling rate r,

which is defined as the ratio of the number of generated

instances to that of original positive-class instances, the

above procedure is repeated r ·N+ times.

A synthetic 2-dimensional imbalanced data set is gener-

ated. The negative class has 100 instances, with the mean

vector [0 0]T and the covariance matrix I2, while the positive

class has 10 instances, with the mean vector [2 2]T and the

covariance matrix I2, as shown in Fig. 1 (a). In Fig. 1 (b),

the minimum value of M(σ) is found at σ = 1.25 by the

grid search. In Fig. 1 (c), the kernel function placed at each

positive-class instance is constructed according to σ2S. In

this example, S ≈ I2. Fig. 1 (d) presents the density estimate

for the positive class, which is the mixture of all the kernels

in Fig. 1 (c) with an equal weighting for each component.



(a) (b)

(c) (d)

Fig. 1. PDF estimation for the synthetic imbalanced data set: (a) the imbalanced data set with x denoting positive-class instance and ◦ negative-class
instance, (b) grid search of σ with step 0.05, (c) the PDF kernel of each instance, and (d) the estimated density distribution of the positive class.

The over-sampled data distributions for the imbalanced

data set of Fig. 1 (a), obtained by the proposed method

and the SMOTE at the over-sampling rate r = 1000%,

are depicted in Fig. 2 (a) and (b), respectively, where the

solid line x + y − 2 = 0 in both Fig. 2 (a) and (b) is the

ideal decision boundary for this synthetic data set. Both the

proposed and SMOTE methods increase the positive-class

instances, particularly in the decision region. However, it can

be seen from Fig. 2 (b) that the over-sampled positive-class

data set is confined in the region defined by the original

positive-class instances, because the SMOTE generates the

synthetic instances in the line linking the original instance

to its k-NN neighbours [37]. As a result, increasing the

oversampling rate r only leads to a higher density in this

region. By contrast, the over-sampled positive class generated

by the proposed method expands along the direction of the

ideal decision boundary, as can be seen from Fig. 2 (a).

III. TUNABLE RBF CLASSIFIER

After oversampling the positive class with a required

oversampling rate r, a tunable RBF classifier is constructed

based on the rebalanced training set using the algorithm

proposed in [24]. For notational simplicity, the oversampled

training data set is still denoted as DN = {xk, yk}
N
k=1. The

RBF classifier to be constructed takes the form

ŷ
(M)
k =

M
∑

i=1

wigi

(

xk

)

= gT
M (k)wM , ỹ

(M)
k = sgn

(

ŷ
(M)
k

)

(8)

where M is the number of RBF kernels, ŷ
(M)
k is the

output of the classifier with the M kernels gi(•) for 1 ≤

i ≤ M , wM =
[

w1 w2 · · ·wM

]T
the weight vector and

gT
M (k) =

[

g1(xk) g2(xk) · · · gM (xk)
]

, while ỹ
(M)
k denotes

the estimated class label for xk with sgn(y) = −1 if

y ≤ 0 and sgn(y) = 1 if y > 0. The Gaussian kernel

gi(x) = e−(x−µi)
T
Σ
−1

i (x−µi) is adopted, where µi ∈ R
m

is the center vector of the ith RBF kernel and the ith
kernel’s covariance matrix takes a diagonal form of Σi =
diag{σ2

i,1, σ
2
i,2, · · · , σ

2
i,m}. The position of each kernel, µi,

and coverage of each kernel, Σi, are both considered as the

parameters to be determined in kernel modelling.

From (8), the RBF classifier over DN can be written as

y = GMwM + ε(M) (9)

where ε(M) =
[

ε
(M)
1 ε

(M)
2 · · · ε

(M)
N

]T
with ε

(M)
k = yk −

ŷ
(M)
k , y =

[

y1 y2 · · · yN

]T
, and GM =

[

g1 g2 · · ·gM

]

with



(a) (b)

Fig. 2. Over-sampled distributions of the synthetic imbalanced data set at over-sampling rate r = 1000%: (a) the proposed method, and (b) the SMOTE.

gl =
[

gl(x1) gl(x2) · · · gl(xN )
]T

for 1 ≤ l ≤ M . Note

that gl is the lth column of GM while gT
M (k) is the kth

row of GM . Consider the orthogonal decomposition GM =
PMAM , where

AM =













1 a1,2 · · · a1,M

0 1
. . .

...
...

. . .
. . . aM−1,M

0 · · · 0 1













and PM =
[

p1 p2 · · ·pM

]

with pT
i pj = 0 for i 6= j. The

RBF classifier (9) can alternatively be represented as:

y = PMθM + ε(M) (10)

where θM =
[

θ1 θ2 · · · θM

]T
satisfies θM = AMwM .

The OFS procedure constructs the RBF kernels one by

one by minimising the LOO misclassification rate [24]. At

the nth stage of model construction, the nth RBF kernel,

namely, pn and θn, is determined. Define the LOO model

output of the n-term RBF model constructed from the LOO

data set DN \ (xk, yk), calculated at xk, as ŷ
(n,−k)
k . Further

define the associated LOO decision variable as

s
(n,−k)
k = sgn(yk)ŷ

(n,−k)
k = ykŷ

(n,−k)
k (11)

Then the LOO misclassification rate is defined by

J
(n)
LOO =

1

N

N
∑

k=1

Id

(

s
(n,−k)
k

)

(12)

in which the indicator function Id(s) is given by Id(s) = 1
if s ≤ 0 and Id(s) = 0 if s > 0. The LOO decision variable

can be efficiently calculated according to [24]

s
(n,−k)
k =

ψ
(n)
k

η
(n)
k

(13)

in which ψ
(n)
k and η

(n)
k can be computed recursively by:

ψ
(n)
k = ψ

(n−1)
k + ykθnpn(k) −

p2
n(k)

pT
npn + λ

(14)

η
(n)
k = η

(n−1)
k −

p2
n(k)

pT
npn + λ

(15)

where pn(k) is the kth element of pn and λ ≥ 0 is a small

regularisation parameter.

To determine the nth RBF kernel, its center vector µn and

diagonal covariance matrix Σn can be found by minimising

J
(n)
LOO. The problem of determining the nth RBF kernel’s

parameters at the nth stage of the OFS procedure is therefore

to solve the following optimisation problem

{µn,Σn}opt = arg min
µ,Σ

J
(n)
LOO(µ,Σ) (16)

The PSO algorithm is used to solve this optimisation prob-

lem, and the detailed algorithmic steps to determine the nth

RBF node’s parameters can be found in [24], [37]. The

construction of the RBF classifier automatically terminates

at the size of M when J
(M+1)
LOO ≥ J

(M)
LOO.

IV. EXPERIMENTAL RESULTS

The proposed PDFOS+PSO-OFS method was examined

on the six data sets summarised in Table I in the order of the

ascending imbalanced degree (ID), defined as ID = N−/N+.

The austempered ductile iron (ADI) data set came from [38],

while the other five data sets were from [39]. The multiple-

class data sets, Glass, Satimage and Yeast, were turned into

the two-class problems by considering the class with the class

label given in the brackets as the chosen positive class and

designating the other classes altogether as the negative class.

Different n-fold cross-validations (CVs) were performed on

the different data sets. Each dimension of a feature vector

xk =
[

xk,1 xk,2 · · ·xk,m

]T
was normalised using

x̄k,i =
xk,i − xmin,i

xmax,i − xmin,i
, 1 ≤ k ≤ N, 1 ≤ i ≤ m (17)

with xmin,i = min
1≤k≤N

xk,i and xmax,i = max
1≤k≤N

xk,i. The

mean and standard deviation σ, determined by the PW

estimator for the positive class of each data set, averaged

over the n-fold CV are also reported in Table I.

Three benchmark algorithms were used. The first bench-

mark used the same PSO-OFS based RBF classifier applied



TABLE I

SUMMARY OF THE PROPERTIES OF THE DATA SETS

Data set Attributes m + 1 Positive N+ Negative N
−

ID n-fold CV σ

Pima Diabetes 8 268 500 1.87 10 0.47 ± 0.03
Haberman’s survival 3 81 225 2.78 3 0.52 ± 0.03

Glass(6) 9 29 185 6.38 3 0.42 ± 0.06
ADI 9 90 700 7.78 8 0.56 ± 0.07

Satimage(4) 36 626 5809 9.28 10 0.90 ± 0.00
Yeast(5) 8 44 1440 32.73 3 0.10 ± 0.00

TABLE II

COMPARISON OF MEAN AND STANDARD DEVIATION OF AUCS

Data set LOO-AUC+OFS κ-means+WLSE SMOTE+PSO-OFS PDFOS+PSO-OFS

Pima Diabetes 0.77 ± 0.06 0.80 ± 0.06 0.82 ± 0.06 0.84 ± 0.06

Haberman’s survival 0.68 ± 0.06 0.62 ± 0.06 0.71 ± 0.06 0.74 ± 0.06

Glass(6) 0.94 ± 0.05 0.93 ± 0.06 0.92 ± 0.06 0.97 ± 0.04

ADI 0.82 ± 0.03 0.82 ± 0.03 0.82 ± 0.03 0.83 ± 0.03

Satimage(4) 0.88 ± 0.03 0.88 ± 0.03 0.91 ± 0.03 0.91 ± 0.03

Yeast(5) 0.93 ± 0.04 0.98 ± 0.02 0.97 ± 0.03 0.98 ± 0.02

TABLE III

COMPARISON OF MEAN AND STANDARD DEVIATION OF BEST G-MEANS

Data set LOO-AUC+OFS (ρ =) k-means+WLSE (ρ =) SMOTE+PSO-OFS (r =) PDFOS+PSO-OFS (r =)
Pima Diabetes 0.74 ± 0.04 (2.0) 0.75 ± 0.06 (2.5) 0.76 ± 0.05 (100%) 0.78 ± 0.05 (100%)

Haberman’s survival 0.67 ± 0.05 (3.0) 0.57 ± 0.07 (4.0) 0.69 ± 0.08 (200%) 0.69 ± 0.02 (400%)
Glass(6) 0.93 ± 0.03 (3.0, 6.0) 0.95 ± 0.02 (8.0) 0.95 ± 0.06 (600%) 0.97 ± 0.04 (600%)

ADI 0.76 ± 0.01 (15.0) 0.77 ± 0.02 (10.0) 0.76 ± 0.02 (1000%, 1500%) 0.77 ± 0.01 (800%, 1000%)
Satimage(4) 0.85 ± 0.03 (8.0) 0.84 ± 0.02 (10.0) 0.86 ± 0.01 (1000%) 0.86 ± 0.02 (600%)

Yeast(5) 0.92 ± 0.09 (27.0, 30.0) 0.97 ± 0.01 (18.0) 0.98 ± 0.00 (2700%) 0.98 ± 0.01 (900%)

TABLE IV

COMPARISON OF MEAN AND STANDARD DEVIATION OF BEST F-MEASURES

Data set LOO-AUC+OFS (ρ =) k-means+WLSE (ρ =) SMOTE+PSO-OFS (r =) PDFOS+PSO-OFS (r =)
Pima Diabetes 0.67 ± 0.05 (2.0) 0.68 ± 0.06 (2.5) 0.70 ± 0.04 (100%) 0.71 ± 0.06 (100%)

Haberman’s survival 0.52 ± 0.06 (3.0) 0.44 ± 0.11 (4.0) 0.55 ± 0.09 (200%) 0.54 ± 0.03 (200%, 400%)
Glass(6) 0.87 ± 0.03 (3.0) 0.89 ± 0.02 (8.0) 0.92 ± 0.07 (900%) 0.95 ± 0.01 (100%, 200%)

ADI 0.42 ± 0.01 (10.0) 0.42 ± 0.02 (5.0, 10.0) 0.43 ± 0.02 (300%) 0.45 ± 0.03 (300%)
Satimage(4) 0.58 ± 0.03 (3.0) 0.55 ± 0.05 (2.0) 0.58 ± 0.06 (200%) 0.57 ± 0.05 (200%)

Yeast(5) 0.59 ± 0.08 (9.0, 12.0) 0.61 ± 0.03 (3.0) 0.59 ± 0.03 (600%) 0.63 ± 0.10 (600%)

to the SMOTE oversampling data set [37], denoted by the

SMOTE+PSO-OFS. The second benchmark [13], denoted by

the LOO-AUC+OFS, is a state-of-the-art weighted method.

The third benchmark, the κ-means+WLSE algorithm, was

also an imbalanced learning method.

Three performance metrics were utilised, and they were

the area under the ROC curve (AUC) [40], the G-mean

and the F-measure [41]. Receiver operating characteristics

(ROC) curves are first presented in Fig. 3, where FP rate

and TP rate stand for false positive rate and true positive

rate, respectively. The (FP rate, TP rate) pair in the ROC

of Fig. 3 is the mean of FP rate and TP rate, respectively,

averaged over the n-fold CV. Each algorithm is related to

one curve formed by the pairs of (FP rate, TP rate), obtained

for different over-sampling rates r of the SMOTE+PSO-OFS

and PDFOS+PSO-OFS or different weights ρ of the LOO-

AUC+OFS and κ-means+WLSE. The means and standard

deviations of the AUC metric [40] are then listed in Table II,

where the best results are highlighted in boldface. Likewise,

the G-mean and F-measure metrics [41] with respect to

different r and ρ are reported in Figs. 4 and 5, respectively.

For each data set, the G-mean and F-measure versus r of

the SMOTE+PSO-OFS and PDFOS+PSO-OFS and ρ of the

LOO-AUC+OFS and κ-means+WLSE are depicted as two

separate subplots in the same plot, respectively. The best G-

mean and F-measure of each method with the corresponding

r or ρ value are listed in the Tables III and IV, respectively,

where again the best results are highlighted in boldface.

V. CONCLUSIONS

This study has proposed an over-sampling technique that

seeks to re-balance the skewed class distribution according

to the original statistical information as manifested in the

observed data. This has been achieved by a PW PDF esti-

mator using the positive data samples, followed by drawing

data samples according to the estimated PDF to re-balance

the data. The RBF classifier is then constructed based on

the rebalanced data set using the efficient PSO aided OFS

procedure. Experimental results have demonstrated that the

proposed approach offers a very competitive method, in

comparison with many existing state-of-the-art methods for

dealing with imbalanced classification problems.



(a) (b)

(c) (d)

(e) (f)

Fig. 3. ROC curves of imbalanced data sets: (a) Pima Indians diabetes, (b) Haberman’s survival, (c) Glass, (d) ADI, (e) Satimage, and (f) Yeast.
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