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Abstract—Principal component analysis (PCA) and kernel
PCA (KPCA) are the state-of-art machine learning methods
widely used in industrial process monitoring and fault detection
field. However, these methods build shallow statistical models
based on single layer of features and may not achieve the
best monitoring performance. In order to sufficiently mine the
intrinsic data features, a deep learning based nonlinear PCA
method, referred to as deep PCA (DePCA), is proposed in
this paper. Motivated by the idea of deep learning, a layer-
wise statistical model structure is designed to extract multi-
layer data features, including both linear and nonlinear prin-
cipal components. At each layer, two monitoring statistics are
constructed to monitor the feature changes. For integrating the
monitoring statistics of all feature layers, a Bayesian inference
strategy is applied to convert the monitoring statistics into fault
probabilities, which are weighted to form two probability-based
comprehensive monitoring statistics for process fault detection.
A case study using the benchmark Tennessee Eastman process
demonstrates the superior performance of the proposed DePCA
method over the traditional PCA and KPCA methods.

I. INTRODUCTION

Machine learning plays an important role in our mod-

ern society. Some well-known machine learning algorithms

such as principal component analysis (PCA), support vector

machine (SVM) and artificial neural network (ANN) have

achieved wide-ranging applications in many fields, including

computer vision, web data mining, genomic medicine, wire-

less communication and industrial process monitoring [1]–[5].

Recently, a new powerful machine learning technique called

deep learning has emerged and attracted significant attention

from researchers. Different to traditional machine learning

techniques with shallow model structure, deep learning sys-

tems usually develop the deep neural networks consisting of

multiple processing layers to extract multiple levels of data

features. With deep model structure, raw data are transformed

into low level of data features, which are further used to

compute higher level of data representations. Deep learning

has turned out to be very helpful to discover the intricate

information among the high-dimensional data in many fields,

including imagine recognition, natural language processing

and gene data analysis [6]–[10].

Typical deep learning methods include convolutional neural

network (CNN), deep belief network (DBN) and deep au-
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toencoder network (DAN). CNN, inspired by the biological

study on the animal visual cortex, is a feed-forward network

with a series of convolutional layers and pooling layers [6].

Using CNN, Lecun et al. [11] constructed a deep neural

network named LeNet-5 for handwritten character recognition.

In order to recognize the human actions in videos, Ji et al.

[12] proposed a 3D CNN by extracting the features from

both spatial and the temporal dimensions. DBN, consisting

of multiple restricted Boltzmann machines (RBMs), utilizes a

layer-by-layer greedy learning strategy to initialize the network

parameters and then performs the parameter fine-tuning by

combing the desired outputs [13]. Lim et al. [14] developed

a fingerprint recognition system based on the DBN and vali-

dated its effectiveness on the international competition dataset

LivNet2013. Abdel-Zaher and Eldeib [15] applied the DBN to

construct a computer-aid medical diagnosis system for breast

cancer classification. DAN constructs the network structure by

stacking multiple layers of autoencoders [8]. Xiong and Zuo

[16] used the DAN to recognize the geochemical anomalies.

For handling the video-based human pose recovery problem,

Hong et al. [17] designed a multimodal deep autoencoder and

demonstrated its effectiveness with experiments. In the natural

language processing field, Zhou et al. [18] applied the stacked

autoencoders for cross-lingual sentiment classification. It can

be seen that deep neural networks have been applied to deal

with different problems, and some more application examples

of deep learning can be found in [19]–[21].

This paper considers how to apply deep learning to improve

the current industrial process monitoring methods. In the data-

driven industrial process monitoring field, the commonly used

feature extraction tools are the PCA and its nonlinear version

known as kernel PCA (KPCA) [22], [23], which represent

the current state-of-the-arts in extracting linear and nonlinear

features, respectively, and they have been successfully applied

to industrial process monitoring and fault detection [4], [24]–

[26]. However, PCA and KPCA only compute one single layer

of linear or nonlinear features for process monitoring, and they

belong to the so-called shallow machine learning techniques.

How to integrate the deep learning mechanism with the basic

PCA and KPCA components is extremely valuable and may

enhance industrial process monitoring performance .

Specifically, motivated by the success of deep learning

strategy in many fields, we propose a deep learning based

nonlinear PCA model, referred to as deep PCA (DePCA),

for industrial process monitoring and fault detection. In the

proposed method, a statistical monitoring model is designed

with multiple layers of feature extractions so that the hidden



process information among the process data can be sufficiently

exploited. Furthermore, the monitoring results at different

layers are fused to indicate the process operating status. Hence,

our contribution is two-fold. Firstly, we present a multi-layer

principal component (PC) feature extraction framework, which

uses PCA and KPCA as the basic feature extraction tools

to capture linear and nonlinear PCs hierarchically. To our

best knowledge, we are the first to combine PCA and KPCA

with deep learning idea in industrial process monitoring.

Secondly, we propose a Bayesian inference based multi-

layer information fusion. More specifically, with the use of

DePCA monitoring model, multi-layer monitoring statistics

are obtained based on the different layers of features. Bayesian

inference can be used to transform the monitoring statistics at

each layer into the fault probabilities, which are weighted to

construct two probability-based overall statistics for indicating

the process operating status.

The remainder of this paper is organized as follows. Starting

with a brief review of PCA and KPCA as the motivator,

Section II details the proposed DePCA method for industrial

process monitoring application, including the DePCA model

structure, the Bayesian inference based monitoring statistics

construction, and the process monitoring procedure based on

DePCA. Section III provides the case study on the benchmark

Tennessee Eastman process to verify the proposed method. We

draw the conclusions in Section IV.

II. THE PROPOSED DEPCA METHOD

A. Motivation

PCA is a well-known machine learning algorithm widely

applied to data-based industrial process monitoring. The PCA

statistical modeling procedure is depicted in Fig. 1, where the

original data X are linearly mapped onto the linear features

YL, and two statistics, T 2 and Q, are used to monitor the

changes of the features [22]. The procedure of linear feature

extraction and the construction of T 2 and Q statistics can

readily be found in the literature, e.g., [22], and they will not

be repeated here.
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Fig. 1: PCA statistical modelling diagram.

By contrast, KPCA involves kernel mapping in order to

extract nonlinear features. As shown in Fig. 2, the original data

X are firstly nonlinearly transformed into the kernel matrix K

and then the kernel PCs (KPCs) are obtained as the nonlinear

features YN for process monitoring [23], [25]. Again, the

detailed KPC extraction procedure and the construction of

the corresponding T 2 and Q statistics based on the extracted

nonlinear features can readily be found in the literature, and

therefore they will not be repeated here.
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Fig. 2: KPCA statistical modelling diagram.

Comparing Fig. 2 with Fig. 1, it is obvious that the KPCA

model has a deeper structure than the PCA. This explains why

KPCA performs better than PCA in many industrial process

monitoring applications. However, both the PCA and KPCA

can be regarded as ‘shallow’ learning as they involve only one

layer of linear and nonlinear features, respectively. Motivated

by deep learning theory, we propose a DePCA model, which

improves the present PCA and KPCA methods by extracting

multiple levels of features from the data.

B. DePCA model structure

The proposed DePCA model structure is shown in Fig. 3,

which consists of the L ≥ 2 feature layers constructed hier-

archically. The first feature layer extracts the linear features,

while the lth feature layer mines the nonlinear features layer-

wise, where 2 ≤ l ≤ L. Furthermore, the two monitoring

statistics are constructed based on each layer of features. We

now detail this DePCA model.

Given the training data matrix X ∈ R
n×m with the n

samples of m variables, PCA is applied at the first feature

layer to seek a projection vector f1) ∈ R
m so that the linear

transformation y1) = Xf1) represents as much information

of X as possible, where 1) denotes the first-layer feature ex-

traction. Specifically, the optimization to obtain the projection

vector f1) is formulated as

max
f1)

J(f1)) = max
f1)

1
n−1

(

f1)
)T
XTXf1),

s.t.
(

f1)
)T
f1) = 1.

(1)

Solving the optimization problem (1) results in the following

eigenvalue problem

1

n − 1
XTXf1) = λ1)f1), (2)

whose solutions are the m eigenvectors f
1)
j for 1 ≤ j ≤ m

corresponding to the eigenvalues λ
1)
1 ≥ λ

1)
2 ≥ · · · ≥ λ

1)
m.

The first-layer features are computed as y
1)
j = Xf

1)
j for 1 ≤

j ≤ m, which yields the first-layer feature matrix Y 1) =
[

y
1)
1 y

1)
2 · · ·y

1)
m

]

∈ R
n×m.

At the lth feature layer, where 2 ≤ l ≤ L, KPCA

optimization is performed on the input feature matrix Y l−1)

to extract the KPCs Y l) as the lth-layer nonlinear features.

Specifically, the input data matrix Y l−1) is implicitly mapped

by a nonlinear mapping ψ(•) onto the new high-dimensional

space F , and the result is denoted as ψ
(

Y l−1)
)

∈ R
n × F .

Then linear PCA is performed on the matrix ψ
(

Y l−1)
)

, and
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Fig. 3: DePCA statistical modelling diagram.

this yields the following optimization task

max
f l)

J
(

f l)
)

= max
f l)

(

f l)
)T(

ψ

(

Y l−1)
))T

ψ

(

Y l−1)
)

f l)

n−1 ,

s.t.
(

f l)
)T
f l) = 1,

(3)

where f l) ∈ F is the PCA projection vector at the lth feature

layer. The projection vector f l) can be expressed as the linear

combination of ψ
(

Y l−1)
)

[23], [24]

f l) =
(

ψ
(

Y l−1)
))T

βl), (4)

where βl) ∈ R
n is the coefficient vector. The optimization (3)

can thus be reformulated to

max
f l)

J
(

f l)
)

=max
f l)

1
n−1

(

(

βl)
)T
ψ

(

Y l−1)
)(

ψ
(

Y l−1)
))T

×ψ
(

Y l−1)
)(

ψ
(

Y l−1)
))T

βl)
)

,

s.t.
(

βl)
)T
ψ

(

Y l−1)
)(

ψ
(

Y l−1)
))T

βl) = 1.

(5)

Kernel trick is usually applied to avoid the explicitly defining

ψ(•). Denote y
l−1)
i as the ith sample of Y l−1), i.e., the

transpose of the ith row of Y l−1). Then we have the kernel

matrix Kl−1) = ψ
(

Y l−1)
)(

ψ
(

Y l−1)
))

)T ∈ R
n×n with

the (i, j)th element
[

Kl−1)
]

i,j
=

(

ψ
(

y
l−1)
i

))T
ψ

(

y
l−1)
j

)

=

ker
(

y
l−1)
i ,y

l−1)
j

)

. Here ker(•, •) is the chosen kernel function.

Commonly used kernel functions include Gaussian kernel

and polynomial kernel [23], [25]. With this kernel trick, the

optimization (5) becomes

max
f l)

J
(

f l)
)

= max
f l)

1
n−1

(

βl)
)T
Kl−1)Kl−1)βl),

s.t.
(

βl)
)T
Kl−1)βl) = 1,

(6)

whose solutions can be computed by the following eigenvalue

decomposition

Kl−1)βl) = (n − 1)λl)βl). (7)

Solving (7) results in the nl) non-zero eigenvalues λ
l)
1 ≥

λ
l)
2 ≥ · · · ≥ λ

l)

nl) with the corresponding eigenvectors β
l)
j for

1 ≤ j ≤ nl), where nl) ≤ n. Then the lth-layer features

are obtained as Y l) =
[

y
l)
1 y

l)
2 · · ·y

l)

nl)

]

∈ R
n×nl)

, with

y
l)
j = Kl−1)β

l)
j for 1 ≤ j ≤ nl).

For a given testing vector xt, its first-layer features y
1)
t =

[

y
1)
t,1 y

1)
t,2 · · · y

1)
t,m

]T

are calculated according to

y
1)
t,j = xT

t f
1)
j , 1 ≤ j ≤ m, (8)

while its lth-layer features for 2 ≤ l ≤ L, y
l)
t =

[

y
l)
t,1 y

l)
t,2 · · · y

l)

t,nl)

]T

, are computed according to

y
l)
t,j =

(

ψ
(

y
l−1)
t

))T(

ψ
(

Y l−1)
))T

β
l)
j =

(

k
l−1)
t

)T
β

l)
j , (9)

for 1 ≤ j ≤ nl), where k
l−1)
t = ψ

(

Y l−1)
)

ψ
(

y
l−1)
t

)

∈ R
n is

the kernel vector corresponding to y
l−1)
t .

For each layer, two monitoring statistics T 2,l) and Ql) are

applied to monitor the process changes. Specifically, at the lth
layer, the monitoring statistics are constructed as

T 2,l) =
(

y
l)
tkl

)T
Λ

−1
l y

l)
tkl

, (10)

Ql) =
(

y
l)
t

)T
y

l)
t −

(

y
l)
tkl

)T
y

l)
tkl

, (11)

where y
l)
tkl

=
[

y
l)
t,1 y

l)
t,2 · · · y

l)
t,kl

]T

are the lth-layer PCs cor-

responding to the first kl eigenvalues λ
l)
j for 1 ≤ j ≤ kl, and

Λl ∈ R
kl×kl is the diagonal matrix with λ

l)
j for 1 ≤ j ≤ kl

as its diagonal entries. The value of kl is determined by the

average eigenvalue method, which ensures that the first kl

eigenvalues chosen are greater than the average value of all

the eigenvalues λ
l)
j , 1 ≤ j ≤ nl) [24].

For the normal operation data, T 2,l) and Ql) generally obey

some unknown distributions, which however can be estimated

by a kernel density estimation (KDE) method [25], [27], [28].

Based on the distributions estimated by KDE, the confidence

limits T
2,l)
lim and Q

l)
lim can be determined with the given

significance level η. In this paper, η is set to 5%. Then T
2,l)
lim

and Q
l)
lim represent the 95% confidence limits.

C. Bayesian inference based monitoring statistics integration

Based on the DePCA model given in Section II-B, we

obtain the monitoring statistics T 2,l) and Ql) as well as their

confidence limits T
2,l)
lim and Q

l)
lim, for 1 ≤ l ≤ L. In order to

construct an overall process status indicator, the monitoring

statistics of all the layers are fused together by the Bayesian

inference strategy [29]. With this strategy, each monitoring

statistic is firstly converted into a posterior fault probability by

Bayesian inference. Then all the posterior fault probabilities

are weighted to form two probability-based overall monitoring

statistics, as illustrated in Fig. 3.

Given the testing vector xt, the posterior fault probabilities

related to the statistics T 2,l) and Ql) are denoted by P
l)
T 2(F |xt)



and P
l)
Q (F |xt), respectively, where the symbol F means in

fault condition. For notational convenience, we use the symbol

S to represent either the T 2 statistic or the Q statistic. The

posterior fault probabilities P
l)
S (F |xt) are computed by

P
l)
S (F |xt) =

P
l)
S (xt|F )P

l)
S (F )

P
l)
S (xt)

, 1 ≤ l ≤ L, (12)

where P
l)
S (F ) is the prior fault probability equivalent to

the significance level η and P
l)
S (xt|F ) is the occurrence

probability of xt given the fault condition, defined by

P
l)
S (xt|F ) = exp

(

− γS
l)
lim/Sl)

)

, (13)

in which γ is the tuning parameter designed to decrease the

sensitivity to the outlier data. In this paper, γ is empirically

chosen to be 0.2. The occurrence probability of xt in (12),

P
l)
S (xt), can be obtained according to

P
l)
S (xt) = P

l)
S (xt|F )P

l)
S (F ) + P

l)
S (xt|N)P

l)
S (N), (14)

where N indicates the normal operation, and P
l)
S (N) is

the prior normal-operation probability with its value as the

confidence level 1 − η, while P
l)
S (xt|N) is the occurrence

probabiltiy of xt under the normal condition, calculated by

P
l)
S (xt|N) = exp

(

− γSl)/S
l)
lim

)

. (15)

Based on the posterior fault probabilities P
l)
T 2(F |xt) and

P
l)
Q (F |xt) of all the layers, two overall monitoring statistics

WT 2 and WQ are constructed by a weighting approach as

WT 2 =
∑L

l=1
w

l)
T 2P

l)
T 2(F |xt), (16)

WQ =
∑L

l=1
w

l)
QP

l)
Q (F |xt), (17)

where w
l)
T 2 and w

l)
Q are the weightings, which are calculated

based on the conditional fault probabilities as

w
l)
T 2 =P

l)
T 2(xt|F )

/

∑L

i=1
P

i)
T 2(xt|F ), (18)

w
l)
Q =P

l)
Q (xt|F )

/

∑L

i=1
P

i)
Q (xt|F ). (19)

When WT 2 ≤ η and WQ ≤ η, the process is under the

normal operation status. Otherwise, a fault is detected.

D. Fault detection procedure based on DePCA

The DePCA based fault detection procedure includes two

stages: model training stage and online monitoring stage. In

the first stage, we collect the normal operation data from the

process and build the statistical model by the DePCA method.

Then in the second stage, the real-time process operating data

are projected onto the DePCA model to compute the multilayer

features, which are used to construct the monitoring statistics

WT 2 and WQ for fault detection.

Model training stage:

1) Collect the process dataset X under the normal operation

condition, and divide X into two subsets: model training

dataset Xtr and model validating dataset Xva.

2) Normalize all the variables of the dataset Xtr to zero

mean and unit variance, and perform the DePCA model-

ing.

3) Normalize the validating dataset Xva with the means and

variances of the original Xtr, and compute its projection

onto the DePCA model.

4) Obtain the monitoring statistics T 2,l) and Ql) as well

as their confidence limits T
2,l)
lim and Q

l)
lim by the KDE

method.

Online monitoring stage:

1) Collect the real-time data sample xt for online monitor-

ing.

2) Scale xt with the means and variances of the normal

training dataset, and compute its multiple-layer features

using the trained DePCA model.

3) Based on the layer-wise features of xt, obtain the mon-

itoring statistics of all the layers and then calculate the

weighted overall monitoring statistics WT 2 and WQ.

4) Compare the monitoring statistics WT 2 and WQ with

the significance level η to determine if a fault occurs.
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Fig. 4: The Tennessee Eastman process flowchart

III. CASE STUDY

The Tennessee Eastman (TE) process is a benchmark

process widely adopted to evaluate the process monitoring

and fault diagnosis methods [25], [30]–[32]. This process

simulates a real chemical process, whose flowchart is depicted

in Fig. 4. The TE process involves five major units: reactor,

condenser, compressor, stripper and separator. The monitored

TABLE I: List of the 10 TE process faults used in this paper.

Fault
Description

Fault
Type

label code

F1 A/C feed ratio(stream 4) IDV1 Step

F2 Reactor cooling water inlet temperature IDV4 Step

F3 Condenser cooling water inlet temperature IDV5 Step

F4 C feed temperature (stream 4) IDV10 Random

F5 Reactor cooling water inlet temperature IDV11 Random

F6 Unknown fault IDV16 Unknown

F7 Unknown fault IDV17 Unknown

F8 Unknown fault IDV19 Unknown

F9 Unknown fault IDV20 Unknown

F10 Stream 4 valve IDV21 Sticking



33 variables consist of 22 process measurement variables and

11 manipulated variables. The process simulator provides the

normal operation case and different fault cases. The 10 faults

listed in Table I are applied to validate the proposed DePCA

method. The normal and fault datasets can be downloaded

from http://web.mit.edu/braatzgroup/links.html. It is noted that

the details of faults F6, F7, F8 and F9 are not open to the

public but their fault datasets are available. A total of 1460

normal operation samples are collected and they are divided

into two subsets. One subset with 500 samples is used as the

training dataset and the another subset with 960 samples is

used as the validating dataset. Each fault dataset contains 960

samples, and the fault is introduced after the 160th sample.

The proposed DePCA method is applied to monitor the TE

process in comparison with the traditional PCA and KPCA

based methods. In the monitoring charts, the dashed line

represents the 95% confidence limit while the solid curve indi-

cates the monitoring statistic. Two performance metrics, fault

detection rate and fault detection time, are used to evaluate the

monitoring results. The fault detection rate is defined as the

percentage of the samples exceeding the confidence limits over

all the faulty samples, while the fault detection time is defined

as the sample index of the alarming sample from which the

successive 6 samples all exceed the confidence limit.
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Fig. 5: PCA monitoring charts for fault F4.
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Fig. 7: DePCA monitoring charts for fault F4.

How ‘deep’ the DePCA model is specified by the number

of layers L. The value of L has significant impact on the

achievable performance, and an appropriate L is obviously

problem dependent. In the present case study, we empirically

set the number of layers to L = 2, and the resulting DePCA

involves one layer of linear features and one layer of nonlinear

features. This choice of DePCA is sufficient to achieve better

fault detection performance over the existing state-of-the-art

KPCA, as will be shown in the following results. On the other

hand, the online computational complexity of this DePCA is

very close to that of the KPCA, since the additional complexity

involved in extracting linear features is negligible. The kernel

function of KPCA and DePCA is selected as the Gaussian

kernel with the kernel width set to δ = 3300 empirically. The

number of the retained linear or nonlinear PCs is determined

by the average eigenvalue method.

We first consider fault F4, which involves the random

variations of stream 4 feed temperature. The monitoring charts

of the PCA, KPCA and DePCA methods are shown in Figs. 5

to 7, respectively. Observe from Fig. 5 that the PCA T 2

statistic detects this fault at the 218th while its Q statistic

indicates the fault at the 208th sample. From Fig. 6, it can

be seen that the KPCA T 2 and Q statistics alarm this fault at
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the 196th sample and 185th sample, respectively, which are

earlier than those of the PCA method. The DePCA results of

Fig. 7 show that the WT 2 and WQ statistics both indicate

the fault at the 182th sample. Clearly, the deep learning based

DePCA reduces the fault detection delay for fault F4.

The monitoring results of the three methods for fault F8 are

shown in Figs. 8 to 10, respectively. It can be seen from Fig. 8

that the PCA T 2 statistic cannot detect this fault effectively,

while its Q statistic alarms the fault at the 290-th sample. The

fault detection rates of the PCA T 2 and Q statistics are 11.9%

and 38.5%, respectively. As shown in Fig. 9, the KPCA T 2

and Q statistics achieve 68.5% and 48.5% of fault detection

rate, respectively. Additionally, the KPCA T 2 statistic detects

this fault at the 223th sample while its Q statistic gives the

alarm signal at the 300th sample. By contrast, the results of

Fig. 10 show that the DePCA can detect this fault more quickly

than the KPCA, whose WT 2 and WQ statistics indicate

the fault at the 171th and 170th sample, respectively. The

corresponding fault detection rates are improved to 83.8%

and 90.3%, respectively. Clearly, the DePCA considerably

outperforms the KPCA in terms of detecting fault F8.

Tables II and III summarize the fault detection rates and

fault detection times, respectively, obtained by the PCA,

KPCA and DePCA methods for all the 10 TE process faults

tested. From Table II, it is observed that the average fault

detection rates obtained by the DePCA’s WT 2 and WQ
statistics are 79.4% and 90.1%, respectively, which are higher

than the average fault detection rates of the PCA and KPCA.

In Table III, the notation ’–’ represents fault detection failure.

TABLE II: Fault detection rates (%) of the tested TE process

faults obtained by PCA, KPCA and DePCA.

Fault PCA KPCA DePCA

Label T 2 Q T 2 Q WT 2 WQ

F1 99.3 100 100 99.6 99.9 100

F2 25.8 100 100 83.5 98.6 100

F3 29.5 29.4 29.1 81.0 29.6 100

F4 50.4 45.3 56.1 81.0 86.5 88.8

F5 46.3 79.3 84.1 66.6 71.6 81.8

F6 35.9 46.3 38.5 85.5 89.3 91.6

F7 82.0 95.5 90.6 90.3 94.9 96.6

F8 11.9 38.5 68.5 48.5 83.8 90.3

F9 48.0 58.5 73.4 65.4 88.4 90.8

F10 41.0 55.4 59.5 42.8 51.4 61.3

Average 47.0 64.8 70.0 74.4 79.4 90.1

TABLE III: Fault detection times (sample number) of the

tested TE process faults obtained by PCA, KPCA and DePCA.

Fault PCA KPCA DePCA

Label T 2 Q T 2 Q WT 2 WQ

F1 167 161 161 164 162 161

F2 463 161 161 163 163 161

F3 167 161 161 161 161 161

F4 218 208 196 185 182 182

F5 276 166 166 171 166 166

F6 191 177 350 171 170 167

F7 187 182 182 184 182 182

F8 – 290 223 300 171 170

F9 239 245 239 238 230 230

F10 669 426 416 637 571 416

For faults F1, F2, F3, F5 and F7, the DePCA achieves slight

performance enhancements over the KPCA method, but in the

cases of faults F4, F6, F8, F9 and F10, the DePCA clearly

outperforms the KPCA.

TABLE IV: Average false alarming rates (%) of the tested TE

process datasets obtained by PCA, KPCA and DePCA.

Method PCA KPCA DePCA

Statistics T 2 Q T 2 Q WT 2 WQ

FAR 3.3 4.7 3.9 3.1 2.1 2.2

The false alarming rate (FAR) on the normal operating

samples is also an important performance metric for industrial

process fault detection. Here we define the FAR as the percent-

age of the samples exceeding the confidence limit under the

normal operation condition. Each of the 10 TE fault datasets

contains 160 normal operating samples. The average FARs

of the three methods calculated on a total of 1600 normal

operating samples are given in Table IV. As 95% confidence

limit is used as the detection threshold, up to 5% of the

normal operating samples may exceed the confidence limit

statistically. From Table IV, it can be seen that all the FARs are

lower than 5%. Moreover, the DePCA achieves lower FARs

than the PCA and KPCA.

IV. CONCLUSIONS

In this paper, inspired by deep learning, a novel DePCA

framework has been proposed for industrial process monitor-

ing and fault detection. Different to the traditional PCA and

KPCA methods which only monitor one layer of linear or

nonlinear features, the proposed method integrates multiple

PCA and KPCA components to extract the multiple layer-

wise linear and nonlinear data features. A Bayesian inference

strategy has been proposed to transform the monitoring statis-

tics of all the feature layers into the posterior fault proba-

bilities. Two comprehensive monitoring statistics have been

designed by a weighting strategy, which fuses the posterior

fault probabilities from different layers. Simulation results on

the benchmark Tennessee Eastman process have validated the

superior performance of the proposed DePCA method over the

existing state-of-the-art KPCA approach.
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