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Communiation Group Chen, Ahmad, HanzoMotivations

� Spatial proessing with adaptive antenna arrays has shown real promisefor substantial apaity enhanement.� Adaptive beamforming is apable of separating signals transmitted on thesame arrier frequeny but are separated in the spatial domain.� Classial beamforming tehnique is based on minimizing the system meansquare error.� For a ommuniation system, it the bit error rate, not the mean squareerror, that really matters.� This motivates our derivation of a novel beamforming tehnique baseddiretly on minimizing the system bit error rate.

2Communiation Group Chen, Ahmad, HanzoSystem Model� The system has M users (soures), and eah transmits a binary phaseshift keying (BPSK) signal on the same arrier frequeny ! = 2�f .� The baseband signal of user i with signal power A2i ismi(k) = Aibi(k); bi(k) 2 f�1g; 1 � i �MSoure 1 is the desired user and the rest are interfering users.� The signals at the antenna array of L uniformly spaed elements are

xl(k) = MXi=1mi(k) exp (j!tl(�i)) + nl(k) = �xl(k) + nl(k); 1 � l � L

tl(�i): the relative time delay at element l for soure i,�i: the diretion of arrival for soure i, andnl(k): a omplex-valued white Gaussian noise with E[jnl(k)j2℄ = 2�2n. 3

Communiation Group Chen, Ahmad, HanzoMatrix Form of System Model� De�ne the steering vetor for soure isi = [exp(j!t1(�i)) � � � exp(j!tL(�i))℄Tthe system matrix P = [A1s1 � � �AMsM ℄the bit vetor b(k) = [b1(k) � � � bM(k)℄Tand the noise vetor n(k) = [n1(k) � � � bL(k)℄T� Then, the array input vetor x(k) = [x1(k) � � �xL(k)℄T is expressed asx(k) = �x(k) + n(k) = Pb(k) + n(k)
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Communiation Group Chen, Ahmad, HanzoBeamformer� The beamformer output isy(k) = wHx(k) = wH�x(k) +wHn(k) = �y(k) + e(k)where w = [w1 � � �wL℄T is the omplex-valued beamformer weight vetorand e(k) is Gaussian with zero mean and E[je(k)j2℄ = 2�2nwHw.� The estimate of the transmitted bit b1(k) is^b1(k) = � +1; yR(k) = <[y(k)℄ > 0;�1; yR(k) = <[y(k)℄ � 0;� The lassial MMSE beamforming solution is given bywMMSE = �PPH + 2�2nIL��1p1with p1 being the �rst olumn of P
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Communiation Group Chen, Ahmad, HanzoSignal States� Denote the Nb = 2M possible sequenes of b(k) as bq, 1 � q � Nb. Letthe �rst element of bq, orresponding to the desired user, be bq;1.� Then, �x(k) only takes values from the signal state set de�ned asX 4= f�xq = Pbq; 1 � q � Nbg� Therefore, �y(k) 2 Y 4= f�yq = wH�xq; 1 � q � Nbg.� Thus, �yR(k) = <[�y(k)℄ an only take values from the setYR 4= f�yR;q = <[�yq℄; 1 � q � Nbgwhih an be divided into the two subsets onditioned on b1(k)Y(�)R 4= f�y(�)R;q 2 YR : b1(k) = �1g

6Communiation Group Chen, Ahmad, HanzoBit Error Rate� The onditional probability density funtion of yR(k) given b1(k) = +1 is

p(yRj+ 1) = 1Nsb NsbXq=1 1p2��2nwHw exp0B���yR � �y(+)R;q�22�2nwHw 1CA

where �y(+)R;q 2 Y(+)R and Nsb = Nb=2 is the number of the points in Y(+)R .� Thus the BER is given by
PE(w) = 1Nsb NsbXq=1Q (gq;+(w))

where
Q(u) = 1p2� Z 1u exp��v22 � dv and gq;+(w) = sgn(bq;1)�y(+)R;q�npwHw 7

Communiation Group Chen, Ahmad, HanzoMinimum Bit Error Rate Beamformer

� The MBER beamforming solution is then de�ned aswMBER = argminw PE(w)

� There exists no losed-form solution, but with the gradient

rPE(w) = 12Nsbp2��2nwHw NsbXq=1 exp0B�� ��y(+)R;q�22�2nwHw1CA sgn(bq;1)0��y(+)R;qwwHw � �x(+)q 1A

a MBER solution an be obtained iteratively using a simpli�ed onjugatedgradient algorithm.� BER is invariant to the size of w. Thus, if wMBER is a MBER solution,�wMBER is also a MBER solution for � > 0.
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Communiation Group Chen, Ahmad, HanzoExampleLoations of the desired soure and the interfering soures with respetto the two-element linear array with �=2 element spaing, � being thewavelength.
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De�nitions: SNR= A21=2�2n, SIRi = A21=A2i for i = 2; � � � ;M .
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Communiation Group Chen, Ahmad, HanzoBit Error Rate Comparison
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(a): SIRi = 0 dB, i = 2; 3; 4; 5;(b): SIR2 = �6 dB and SIRi = 0 dB, i = 3; 4; 5;(): SIRi = �6 dB, i = 2; 3; 4; 5;

10Communiation Group Chen, Ahmad, HanzoNear-Far E�etThe near-far e�et to bit error rate performane. SNR= 10 dB, SIRi = 24 dB fori = 3; 4; 5, varying SIR2.
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� The MBER solution appears to be robust to the near-far e�et. 11

Communiation Group Chen, Ahmad, HanzoBeam Pattern ComparisonSNR= 10 dB, SIRi = 0 dB, i = 2; 3; 4; 5.
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� Let F (�) be the normalized DFT of the beamformer weight vetor.� Traditionally, the magnitude of F (�) is used to judge the performane of a beamformer.� Magnitude response along an be misleading, as in this ase.� At the four angles for the four interfering soures, the phase responses of the MBERsolution are muh loser to ��2 ) a muh better response of yR(k) = <[y(k)℄.
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Communiation Group Chen, Ahmad, HanzoProbability Density Funtion ComparisonConditional probability density funtion of beamformer given b1(k) = +1and subset Y(+)R . SNR= 10 dB, SIRi = 0 dB, i = 2; 3; 4; 5.

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

co
nd

iti
on

al
 p

df

Re[y]

pdf
states

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

co
nd

iti
on

al
 p

df

Re[y]

pdf
states

(a) MMSE (b) MBER� The beamformer weight vetor is normalized to a unit length, so that the BER is mainlydetermined by the minimum distane of the subset Y(+)R to the deision thresholdyR = 0.� This minimum distane is muh larger for the MBER beamformer.
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Communiation Group Chen, Ahmad, HanzoProbability Density Funtion ComparisonConditional probability density funtion of beamformer given b1(k) = +1and subset Y(+)R . SNR= 15 dB, SIRi = �6 dB, i = 2; 3; 4; 5.
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(a) MMSE (b) MBER� The beamformer weight vetor is normalized to a unit length.� Note that Y(+)R and Y(�)R are no longer linearly separable for the MMSE beamformer) a high BER oor.

14Communiation Group Chen, Ahmad, HanzoBlok-Data Adaptive MBER Algorithm� Given a blok of K training samples fx(k); b1(k)g, a Parzen windowestimate of the beamformer p.d.f. is

^p(yR) = 1Kp2��2nwHw KXk=1 exp��(yR � yR(k))22�2nwHw �

where the kernel width �n is related to the noise standard deviation �n.� From this estimated p.d.f., the estimated BER is given by:^PE(w) = 1K KXk=1Q (^gk(w)) with ^gk(w) = sgn(b1(k))yR(k)�npwHw

� Upon substituting rPE(w) by r ^PE(w) in the onjugate gradientupdating mehanism, a blok-data based adaptive algorithm is obtained.
15

Communiation Group Chen, Ahmad, HanzoConvergene of Blok Adaptive AlgorithmConvergene rate of the blok-data based adaptive MBER algorithm for ablok size of K = 200. The initial weight vetor is set to wMMSE.
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(a) (b)(a): SNR= 10 dB, SIRi = 0 dB for i = 2; 3; 4; 5, adaptive gain � = 1:0 and�2n = 6�2n = 0:3. (b): SNR= 10 dB, SIR3 =SIR4 = 0 dB, SIR2 =SIR5 = �6 dB,adaptive gain � = 0:5 and �2n = 2�2n = 0:1.
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Communiation Group Chen, Ahmad, HanzoE�et of Blok SizeE�et of blok size on the performane of the blok-data based adaptiveMBER algorithm for SIR2 = �6 dB and SIRi = 0 dB, i = 3; 4; 5.
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Communiation Group Chen, Ahmad, HanzoLeast Bit Error Rate Algorithm� Consider a single-sample p.d.f. estimate of the beamformer output~p(yR; k) = 1p2��n exp��(yR � yR(k))22�2n �

� This leads to a single-sample BER estimate ~PE(w; k).� Using the instantaneous stohasti gradientr ~PE(w; k) = �sgn(b1(k))2p2��n exp��y2R(k)2�2n �x(k)� leads to the LBER algorithmw(k + 1) = w(k) + �sgn(b1(k))2p2��n exp��y2R(k)2�2n �x(k) 18Communiation Group Chen, Ahmad, HanzoLearning Curves of LBER AlgorithmLearning urves of the LBER algorithm averaged over 20 runs, the initial weight vetor isset to wMMSE, solid urve is for training and dashed urve for deision-direted adaptationwith ^b1(k) substituting b1(k) (two urves are indistinguishable).
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(a) (b)(a): SNR= 10 dB, SIRi = 0 dB for i = 2; 3; 4; 5, � = 0:03 and �2n = 8�2n = 0:4.(b): SNR= 10 dB, SIR3 =SIR4 = 0 dB, SIR2 =SIR5 = �6 dB, � = 0:02 and�2n = 4�2n = 0:2.
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