
Importane Sampling Simulation andMultiple-Hyperplane Realization of the BayesianDeision Feedbak EqualiserS. Chen and L. HanzoDepartment of Eletronis and Computer SieneUniversity of Southampton, Southampton SO17 1BJ, U.K.sq�es.soton.a.uk lh�es.soton.a.ukAbstratFor the lass of equalisers that employs a symbol-deision �nite-memorystruture with deision feedbak, the optimal solution is known to be theBayesian deision feedbak equaliser (DFE). The omplexity of the op-timal Bayesian DFE however inreases exponentially with the length ofthe hannel impulse response (CIR). It has been noted that, when thesignal to noise ratio (SNR) tends to in�nity, the deision boundary of theBayesian DFE is asymptotially pieewise linear and onsists of severalhyperplanes. This asymptoti property an be exploited for eÆient simu-lation and implementation of the Bayesian DFE. An importane sampling(IS) simulation tehnique is presented based on this asymptoti propertyfor evaluating the lower-bound bit error rate (BER) of the Bayesian DFEunder the assumption of orret deisions being fed bak. A design pro-edure is developed, whih hooses appropriate bias vetors for the simu-lation density to ensure asymptoti eÆieny of the IS simulation. As theset of hyperplanes that form the asymptoti Bayesian deision boundaryan easily be found, they an be used to partition the observation spae.The resulting multiple-hyperplane detetor an losely approximate theoptimal Bayesian detetor, at an advantage of onsiderably redued dei-sion omplexity.1 IntrodutionEqualisation tehnique plays an ever-inreasing role in ombating distortion andinterferene in ommuniation links [1, 2℄ and high-density data storage systems[3, 4℄. For the lass of equalisers based on a symbol-by-symbol deision with1



deision feedbak, the Bayesian DFE [5, 6, 7℄ is known to provide the best per-formane. The omplexity of this optimal Bayesian solution, however, inreasesexponentially with the CIR length, and this limits its pratial usefulness. Forexample, due to its ompliated struture, performane analysis of the BayesianDFE is usually based on onventional Monte Carlo simulation, whih is om-putationally ostly even for modest SNR onditions. To obtain a reliable BERestimate, at least 100 errors should our during a simulation. Thus, for a BERlevel of 10�6, at least 108 data samples are needed. Investigating the BayesianDFE under BER performane better than 10�6 is very diÆult if not impossible,using a onventional Monte Carlo simulation. In order for the Bayesian DFE tobe more widely adopted in pratie, it is also neessary and desired to redueits implementation omplexity without sari�ing performane too muh.Geometrially, the omplexity of the Bayesian DFE is a onsequene of the needto form the optimal deision boundary that is a hypersurfae in the observationspae [6℄. It an be shown that asymptotially, as the SNR tends to in�nity,the Bayesian hypersurfae beomes pieewise linear and is made up of a set ofhyperplanes [8℄. In pratie, at large rather than in�nite SNR, the performanedi�erene between Bayesian deision boundary and a pieewise linear approx-imation is negligible. Eah of these omponent hyperplanes is determined bya pair of so-alled dominant opposite-lass hannel states. This asymptotiproperty an be utilized for various purposes. For instane, in a previous work[9℄, the Bayesian equalisation solution is approximated by only using the setof the dominant signal state pairs in omputation. In this paper, we exploitthis asymptoti property to develop an IS simulation tehnique for performaneevaluation of the Bayesian DFE and to implement the Bayesian DFE in a om-putationally very eÆient multiple-hyperplane form.Iltis [8℄ developed a randomized bias tehnique for the IS simulation of Bayesianequalisers without deision feedbak. Although it an only guarantee asymp-toti eÆieny, as de�ned in [10℄, for ertain hannels, this IS simulation teh-nique provides a valuable method in assessing the performane of the Bayesianequaliser. We extend this IS simulation tehnique to evaluate the lower-boundBER of the Bayesian DFE. By viewing deision feedbak as a geometri trans-lation, the Bayesian DFE is \onverted" to the Bayesian equalizer in the trans-lated spae [11℄, with a desired property that opposite-lass hannel states arealways linearly separable. A design proedure is developed, whih determinesthe set of hyperplanes that form the asymptoti Bayesian deision boundary andonstruts the onvex regions assoiated with individual states by intersetinghyperplanes that are reahable from the states onerned. This provides the ap-propriate bias vetors for the simulation density to ensure asymptoti eÆieny.A multiple-hyperplane partition tehnique for equalisation was developed byKim and Moon [12, 13℄. Their design method determines a set of hyperplaneswhih separate lusters of hannel states. A ombinatorial searh and optimiza-tion proess is arried out to �nd these hyperplanes, whih is omputationally2



very expensive. The onvex regions assoiated with individual hannel statesare onstruted by appropriately interseting hyperplanes. The overall deisionregion is then formed from these onvex regions. The deision omplexity andperformane of the multiple-hyperplane detetor are ontrolled during design bya spei�ed minimum separating distane. Although it is possible to ahieve theasymptoti Bayesian solution by an appropriate hoie of the minimum sepa-rating distane, this is by no means guaranteed as the ombinatorial searh andoptimization proess does not neessarily produe the set of hyperplanes whihform the asymptoti Bayesian deision boundary. We propose a muh simpleralternative design to expliitly realize the asymptoti Bayesian DFE.2 The Bayesian DFEWe will assume that the hannel is real-valued and the reeived signal sampleis given by: y(k) = na�1Xi=0 ais(k � i) + e(k) ; (1)where na is the CIR length, ai are the hannel taps, the Gaussian white noisee(k) has zero mean and variane �2e , and the transmitted symbol s(k) takesvalues from the set f�1g. A DFE uses the observation vetor y(k) = [y(k) � � �y(k � m + 1)℄T and the past deteted symbol vetor ŝb(k) = [ŝ(k � d � 1) � � �ŝ(k � d� n)℄T to produe an estimate ŝ(k � d) of s(k � d). Without the loss ofgenerality, the deision delay of d = na � 1, feedforward order of m = na andfeedbak order of n = na� 1 are hosen, as this hoie is suÆient to guaranteethe linear separability [11℄. The reeived signal vetor an be expressed as:y(k) = F1sf (k) + F2sb(k) + e(k) ; (2)where sf (k) = [s(k) � � � s(k � d)℄T , sb(k) = [s(k � d � 1) � � � s(k � d � n)℄T ,e(k) = [e(k) � � � e(k �m + 1)℄T , and the m � (d + 1) and m � n CIR matriesF1 and F2 are, respetively,F1 = 266664 a0 a1 � � � ana�10 a0 . . . ...... . . . . . . a10 � � � 0 a0 377775 ; (3)
F2 = 266666664 0 0 � � � 0ana�1 0 . . . ...ana�2 ana�1 . . . 0... . . . . . . 0a1 � � � ana�2 ana�1

377777775 : (4)
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Assuming orret past deisions, we have y(k) = F1sf (k) + F2ŝb(k) + e(k).Thus the deision feedbak translates the original spae y(k) into a new spae:r(k) 4= y(k) � F2ŝb(k) : (5)Let the Nf = 2d+1 sequenes of sf (k) be sf;j , 1 � j � Nf . The set of thenoiseless hannel states in the translated spae is de�ned asR 4= frj = F1sf;j ; 1 � j � Nfg ; (6)whih an be partitioned into the two subsets onditioned on s(k � d):R(�) 4= frj 2 R : s(k � d) = �1g : (7)We point out thatR(+) andR(�) are always linearly separable [11℄. The optimalequalisation solution, however, is de�ned by the Bayesian deision funtion [6, 7℄:fB(r(k)) = Xr(+)j 2R(+) exp��r(k)� r(+)j 2 =2�2e�� Xr(�)j 2R(�) exp��r(k)� r(�)j 2 =2�2e� ; (8)assuming equiprobable states. The deision boundary of this Bayesian DFEDB 4= fr : fB(r) = 0g (9)is generally a hypersurfae and annot be realized by one hyperplane. Letwe introdue the following de�nition. A pair of opposite-lass states (r(+) 2R(+); r(�) 2 R(�)) is said to be dominant if 8rj 2 R, rj 6= r(+), rj 6= r(�):krj � r0k2 > kr(+) � r0k2 ; (10)where r0 = �r(+) + r(�)� =2. We an now desribe the asymptoti Bayesiandeision boundary for SNR!1 (or �2e ! 0).Proposition 1 The asymptoti deision boundary DB of the Bayesian DFE forlarge SNR is pieewise linear and made up of a set of L hyperplanes. Eah ofthese hyperplanes is de�ned by a pair of dominant opposite-lass states (r(+)l 2R(+); r(�)l 2 R(�)), suh that the hyperplane is orthogonal to the line onnetingthe pair of dominant states and passes through the midpoint of the line.Proof: See [8℄. As �2e ! 0, a neessary ondition for a point r 2 DB isr = r(+)l + r(�)l2 + "r(+)l � r(�)l2 #? ; (11)4



where x? denotes an arbitrary vetor in the subspae orthogonal to x; and thesuÆient onditions for r 2 DB arekr� r(+)l k2 < kr� rik2; 8ri 2 R(+); ri 6= r(+)l ; (12)kr� r(�)l k2 < kr� rjk2; 8rj 2 R(�); rj 6= r(�)l ; (13)kr� r(+)l k2 = kr� r(�)l k2 : (14)Proposition 1 follows as a diret onsequene. The set of all the dominant statepairs fr(+)l ; r(�)l gLl=1 an easily be determined using a simple algorithm basedon the onditions (11){(14) [8, 9℄.3 IS simulation methodAn exellent introdution to the IS method an be found in [14℄. Sine theBayesian DFE is redued to the Bayesian equalizer in the translated spae, theIS simulation tehnique of [8℄ an be extended to evaluate its lower-bound BERunder the ondition of orret bits being fed bak, whih is given by:P̂e = 1Ns 1Nk NsXi=1 NkXk=1 IE(ri(k)) p(ri(k)jri)p�(ri(k)jri) ; (15)where the indiator funtion IE(r(k)) = 1 if r(k) auses an error, and IE(r(k)) =0 otherwise; p(ri(k)jri) is the true onditional density given ri 2 R(+), andNs = 2d is the number of states in R(+); the sample ri(k) is generated usingthe simulation density p�(ri(k)jri) hosen to bep�(ri(k)jri) = LiXj=1 pj;i 1(2��2e)m2 exp��kri(k)� vj;ik22�2e � : (16)In (16), Li is the number of the bias vetors j;i = �ri + vj;i for ri 2 R(+),pj;i � 0 for 1 � j � Li, and PLij=1 pj;i = 1. An estimate of the IS gain, whihis de�ned as the ratio of the numbers of trials required for the same estimatevariane using the Monte Carlo and IS methods, is given in [8℄. To ahieveasymptoti eÆieny, fj;ig must meet ertain onditions [10℄. We present thefollowing proedure of onstruting p�(ri(k)jri) to meet these onditions.Eah of the L dominant state pairs fr(+)l ; r(�)l g de�nes a hyperplane Hl(r) =wTl r+ bl = 0. The weight vetor wl and bias bl of the hyperplane are given by:wl = 2�r(+)l � r(�)l �kr(+)l � r(�)l k2 ; bl = � (r(+)l � r(�)l )T (r(+)l + r(�)l )kr(+)l � r(�)l k2 : (17)5



Note that the theory of support vetor mahines [15, 16℄ has been applied todetermine Hl with (r(+)l ; r(�)l ) as its two support vetors, and Hl is a anonialhyperplane having the property Hl(r(+)l ) = 1 and Hl(r(�)l ) = �1.A state ri 2 R is said to be suÆiently separable by the hyperplane Hl, if Hlan separate ri orretly with jwTl ri + blj � 1. Thus, if wTl r(+)i + bl � 1 forr(+)i 2 R(+), r(+)i is suÆiently separable by Hl and a separability index h(+)l;iis set to 1; otherwise h(+)l;i = 0. Similarly, if r(�)i 2 R(�) satis�es wTl r(�)i + bl ��1, it is suÆiently separable by Hl and h(�)l;i = 1; otherwise h(�)l;i = 0. Thereahability of Hl from r(+)i 2 R(+) an be tested by omputingl;i = �0:5�wTl r(+)i + bl��r(+)l � r(�)l � : (18)If vl;i = r(+)i +l;i 2 DB , Hl is said to be reahable from r(+)i (l;i is then a biasvetor), and the reahability index is l;i = 1; otherwise l;i = 0. The proessprodues the following separability and reahability table:r(�)1 � � � r(�)Ns r(+)1 � � � r(+)NsH1 h(�)1;1 � � � h(�)1;Ns h(+)1;1 (1;1) � � � h(+)1;Ns (1;Ns)... ... � � � ... ... � � � ...HL h(�)L;1 � � � h(�)L;Ns h(+)L;1 (L;1) � � � h(+)L;Ns (L;Ns)In order to onstrut a onvex region R(+)i for r(+)i 2 R(+), we selet thosehyperplanes that an suÆiently separate r(+)i and that are reahable from r(+)iwith the aid of the above table. This yields the following integer set:G(+)i 4= fj : h(+)j;i = 1 and j;i = 1g : (19)Then R(+)i is the intersetion of all the half-spaes H(+)j 4= fr : Hj(r) � 0g withj 2 G(+)i . In fat, it is not neessary to use every hyperplanes de�ned in G(+)ito onstrut R(+)i . A subset of these hyperplanes will be suÆient, providedthat every opposite-lass state in R(�) an suÆiently be separated by at leastone hyperplane in the subset. If suh a G(+)i exists for eah r(+)i , the simulationdensity onstruted with the bias vetors fj;ig, j 2 G(+)i , will ahieve asymp-toti eÆieny, sine all the hyperplanes de�ned in G(+)i are reahable from r(+)iand obviously at least one of fvj;ig is the minimum rate point (as de�ned in[10℄), and the error region E satis�esE � R(+)i 4= [j2G(+)i H(�)j (20)6



Table 1: The separability and reahability table for the CIR of a = [�0:8 1:0 �0:5℄T .The DFE struture is de�ned by m = 3, d = 2 and n = 2.r(�)1 r(�)2 r(�)3 r(�)4 r(+)1 r(+)2 r(+)3 r(+)4H1 1 1 0 1 0 0 1 (1) 0H2 1 0 1 1 1 (1) 1 (1) 0 1 (1)H3 1 1 1 1 0 1 (1) 0 0H4 0 1 0 0 1 (1) 0 1 (0) 1 (1)H5 0 0 1 0 1 (1) 1 (1) 1 (1) 1 (1)with the half-spaes H(�)j 4= fr : Hj(r) < 0g.An example. The IS tehnique for the Bayesian DFE was simulated using the3-tap CIR de�ned by a = [�0:8 1:0 � 0:5℄T . The bias vetors were generatedusing the proedure desribed above. As in [8℄, the bias vetors were seletedwith uniform probability in the simulation. For all the ases, 105 iterations wereemployed at eah SNR, averaging over all the possible states in R(+). Sine thehannel had a length of na = 3, the DFE struture was spei�ed by m = 3,d = 2 and n = 2. The asymptoti deision boundary onsisted of 5 hyperplanes.Table 1 gives the separability and reahability table for this hannel.
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Signal to Noise Ratio (dB)(a) (b)Figure 1: The lower-bound BERs (a) and the IS gain (b) of the Bayesian DFE forthe CIR of a = [�0:8 1:0 � 0:5℄T using onventional sampling (CS) and importanesampling (IS) simulation. The DFE struture is de�ned by m = 3, d = 2 and n = 2.The states r(+)1 and r(+)4 require the two hyperplanes H2 and H4 to separatethem from all the opposite-lass states, and H2 and H4 are reahable from theboth states. Thus, there are two bias vetors for r(+)1 and r(+)4 , respetively, andE � H(�)2 SH(�)4 . The state r(+)2 is separated from R(�) by the single reahable7



hyperplane H3. Thus, there exists one bias vetor for r(+)2 and E � H(�)3 . Thestate r(+)3 is separated from R(�) by the two reahable hyperplanes H1 and H5,there are two bias vetors for r(+)3 and E � H(�)1 SH(�)5 . Asymptoti eÆienyof the IS simulation is therefore guaranteed for this example.Fig. 1 (a) shows the lower-bound BERs obtained using the IS and onventionalsampling (CS) simulation methods, respetively. It an be seen that the on-ventional Monte Carlo results for low SNR onditions agreed with those of theIS simulation. The estimated IS gains, depited in Fig. 1 (b), indiate thatexponential IS gains were obtained with inreasing SNRs. For SNR=20 dB, theBER of the Bayesian DFE with orret bits being fed bak alulated by theIS tehnique is 1:2 � 10�11. The CS method ould not work under the sameSNR ondition and, to ahieve the same BER estimation auray, it would re-quire approximately 4:8� 108 times of the samples needed by the IS simulationmethod. As the IS method used 4 � 105 data samples, the CS method wouldrequire approximately 2�1014 samples to ahieve a similar estimation variane.
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Figure 2: Multiple-hyperplane detetor for realizing the asymptoti Bayesian DFE.4 Multiple-hyperplane detetorSine the set of the L hyperplanes that form the asymptoti Bayesian deisionboundary an easily be obtained, they an be used for partitioning the obser-vation spae to form a multiple-hyperplane detetor whih has a struture asdepited in Fig. 2. To onstrut suh a detetor, there is no need to test whethera hyperplane Hl is reahable from eah state in R(+) and only a separabilitytable is required. To onstrut a onvex regionR(+)i overing r(+)i 2 R(+), selethyperplanes whih an suÆiently separate r(+)i from the separability table anddenote ~G(+)i 4= fl : h(+)l;i = 1g : (21)Then R(+)i is obtained by the intersetion of all the H(+)j with j 2 ~G(+)iR(+)i = \j2 ~G(+)i H(+)j : (22)8



Table 2: Comparison of deision omplexity for the full Bayesian and multiple-hyperplane detetors. L (usually � 2na) is the number of hyperplanes, and na is theCIR length. The DFE struture is hosen to be m = na, d = na � 1 and n = na � 1.Bayesian DFE Multiple-hyperplane detetorMultipliations (na + 1)� 2na na � LAdditions na � 2na+1 � 1 na � LOthers 2na exp(�) logi ANDs � 2na�1funtion evaluations a logi ORAgain, a subset of the hyperplanes de�ned by (21) is enough in the onstrutionof R(+)i , provided that every state in R(�) an suÆiently be separated by atleast one hyperplane in the subset. The overall deision region R(+) assoiatedwith the deision ŝ(k � d) = 1 is simply formed as the union of all the R(+)iR(+) = Ns[i=1R(+)i : (23)The resulting multiple-hyperplane detetor is now ompletely de�ned. Let athreshold detetor output �j(r(k)) for a linear disriminant funtion Hj(r(k))have Boolean logi value 1 or 0 depending on r(k) 2 H(+)j or not. A Booleanlogi value �(+)i (r(k)) indiating whether r(k) 2 R(+)i or not is obtained via alogi AND operation of f�j(r(k)) : j 2 ~G(+)i g. A Boolean logi value indiatingwhether r(k) 2 R(+) (that is, ŝ(k � d) = 1) or not is obtained via a logi ORoperation of f�(+)i (r(k))g for all i. This detetor ahieves asymptotially theoptimal Bayesian performane sine it realizes exatly the asymptoti Bayesiandeision boundary. Table 2 ompares deision omplexity for the full BayesianDFE and the multiple-hyperplane detetor. The multiple-hyperplane detetorgenerally has muh simpler deision omplexity than the full Bayesian detetor,sine usually L� Nf .An example. The CIR was given by a = [0:4 0:7 0:4℄T . The struture param-eters of the DFE were set to m = 3, d = 2 and n = 2. The asymptoti deisionboundary onsisted of 5 hyperplanes. Table 3 gives the separability table forthis hannel. The state r(+)1 requires the two hyperplanes H1 and H2 to be sep-arated from all the opposite-lass states R(�) and, therefore, the onvex regionR(+)1 for r(+)1 is the intersetion of the two half-spaes H(+)1 and H(+)2 . Thestates r(+)2 and r(+)3 are separated from R(�) by the two hyperplanes H3 andH4. Thus R(+)2 = R(+)3 is the intersetion of the half-spaes H(+)3 and H(+)4 .The state r(+)4 is separated by the single hyperplane H5 from all the opposite-lass states, and the onvex region R(+)4 for r(+)4 is the half-spae H(+)5 de�nedby H5. The overall deision region R(+) is the union of R(+)1 , R(+)2 and R(+)4 .9



Table 3: The separability table for the CIR of a = [0:4 0:7 0:4℄T . The DFE strutureis de�ned by m = 3, d = 2 and n = 2.r(�)1 r(�)2 r(�)3 r(�)4 r(+)1 r(+)2 r(+)3 r(+)4H1 1 0 0 0 1 1 1 1H2 0 1 1 1 1 0 0 0H3 1 1 1 0 0 1 1 1H4 0 0 0 1 1 1 1 0H5 1 1 1 1 0 0 0 1The resulting 5-hyperplane detetor requires 15 multipliations and 15 additionsto detet a symbol, ompared with 32 multipliations, 47 additions and 8 exp(�)evaluations required by the full Bayesian DFE. The BERs of this multiple-hyperplane detetor are ompared with those of the full Bayesian DFE in Fig. 3,under di�erent SNR onditions. The BER results were obtained with detetedsymbols being fed bak. It an be seen from Fig. 3 that there exists hardly anyBER performane di�erene between the two equalisers for this hannel.
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