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ABSTRACT

A l1-norm penalised orthogonal forward regression (l1-POFR) algorithm is proposed based on the concept
of leave-one-out mean square error (LOOMSE), by de!ning a new l1-norm penalised cost function in the
constructed orthogonal space and associating each orthogonal basis with an individually tunable regulari-
sationparameter. Due toorthogonality, the LOOMSEcanbeanalytically computedwithout actually splitting
thedata-set, andmoreover a closed formof the optimal regularisationparameter is derivedbygreedilymin-
imising the LOOMSE incrementally. We also propose a simple formula for adaptively detecting and remov-
ing regressors to an inactive set so that the computational cost of the algorithm is signi!cantly reduced.
Examples are included to demonstrate the e"ectiveness of this new l1-POFR approach.

1. Introduction
One of the main aims in data modelling is good generalisa-
tion, i.e. themodel’s capability to approximate accurately the sys-
tem output for unseen data. Sparse models can be constructed
using the l1-penalised cost function, e.g. the basis pursuit or
least absolute shrinkage and selection operator (LASSO) (Chen,
Donoho, & Saunders, 1998; Efron, Johnstone, Hastie, & Tibshi-
rani, 2004; Tibshirani, 1996). Based on a  xed single l1-penalised
regularisation parameter, the LASSO can be con gured as a
standard quadratic programming optimisation problem. By
exploiting piecewise linearity of the problem, the least angle
regression procedure (Efron et al., 2004) was developed for solv-
ing the problem e!ciently. Note that the computational e!-
ciency in LASSO is facilitated by a single regularisation parame-
ter setting. Formore complicated constraints, e.g. multiple regu-
larisers, the cross-validation by actually splitting data-sets as the
means of evaluating model generalisation comes with consider-
ably large overall computational overheads.

Fundamental to evaluate model generalisation capability
is the concept of cross-validation (Rao, Fung, & Rosales,
2008; Stone, 1974), and one commonly used version of cross-
validation is the leave-one-out (LOO) cross-validation. For the
linear-in-the-parameter models, the LOO mean square error
(LOOMSE) can be calculated without actually splitting the
training data-set and estimating the associated models, by mak-
ing use of Sherman–Morrison–Woodbury theorem (Sherman
& Morrison, 1950). Using the LOOMSE as the model term
selective criterion, an orthogonal forward regression (OFR)
procedure was introduced in Hong, Sharkey, and Warwick
(2003). Furthermore, the l2-norm based regularisation tech-
niques (MacKay, 1991; Orr, 1995) were incorporated into the
orthogonal least squares (OLS) algorithm of Chen, Billings,
and Luo (1989) to produce a regularised OLS algorithm that
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carries out model term selection while reduces the variance of
parameter estimate simultaneously (Chen, Hong, & Harris,
2003). The optimisation of l1-norm regulariser with respect to
model generalisation analytically is however less studied (Ji, Xue,
& Carin, 2008).

We propose a l1-norm penalised OFR (l1-POFR) algorithm
to carry out the regulariser optimisation as well as model term
selection and parameter estimation simultaneously in an OFR
manner. The algorithm is based on a new l1-normpenalised cost
functionwithmultiple l1 regularisers, each ofwhich is associated
with an orthogonal basis vector, by orthogonal decomposition of
the regression matrix of the selected model terms. We derive a
closed form of the optimal regularisation parameter by greedily
minimising the LOOMSE incrementally. To save computational
costs, an inactive set is used along theOFR process by predicting
whether any model terms will be unselectable in future regres-
sion steps.

2. Preliminaries
Consider the general nonlinear system represented by the non-
linear model (Chen & Billings, 1989):

y(k) = f (x(k)) + v(k), (1)

where x(k) =
[
x1(k) x2(k) · · · xm(k)

]T
∈ R

m denotes the input
vector at sample time index k and y(k) is the system output vari-
able, respectively, while v(k) denotes the system white noise and
f(•) is the unknown system mapping.

The unknown system (1) is to be identi ed based on
an observation data-set DN = {x(k), y(k)}Nk=1 using a linear-
in-the-parameter model of the form:
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ŷ(M)(k) = f (M)(x(k)) =

M∑

i=1

θiφi(x(k)), (2)

where ŷ(M)(k) is the model prediction output for x(k) based on
theM-term regressionmodel, andM is the total number of non-
linear regressors, while θ i are the model weights. While there
existmany suitable choices for regressor, without loss of general-
ity, we choose φi(x) to be Gaussian radial basis function (RBF)

φi(x) = e−
‖x−ci‖

2

2τ2 (3)

in which ci = [c1,i c2,i · · · cm,i]
T is known as the centre vector of

the ith RBF unit and τ is an RBF width parameter. We assume
that each RBF unit is placed on a training data, namely, all the
RBF centre vectors {ci}

M
i=1 are selected from the training data

{x(k)}Nk=1, and the RBF width τ has been predetermined, for
example, using cross-validation.

Let us denote e(M)(k) = y(k) − ŷ(M)(k) as the M-term
modelling error for the input data x(k). Over the training
data-set DN, further denote y = [y(1) y(2) · · · y(N)]T, e(M) =[
e(M)(1) e(M)(2) · · · e(M)(N)

]T
, and 8M =

[
φ1 φ2 · · ·φM

]
with

φn =
[
φn(x(1)) φn(x(2)) · · · φn(x(N))]T, 1� n�M. We have

theM-term model in the matrix form of

y = 8MθM + e(M), (4)

where θM =
[
θ1 θ2 · · · θM

]T
. Let an orthogonal decomposition

of the regression matrix 8M be

8M = WMAM, (5)

where

AM =




1 a1,2 · · · a1,M

0 1
. . .

...
...

. . .
. . . aM−1,M

0 · · · 0 1




(6)

and

WM =
[
w1 w2 · · · wM

]
(7)

with columns satisfying w
T
i w j = 0, if i  j. The regression

model (4) can alternatively be expressed as

y = WMgM + e(M), (8)

where gM = [g1 g2 · · · gM]
T satis es the triangular system

AMθM = gM , which can be used to determine the originalmodel
parameter vector θM , given AM and gM . The space spanned by
the original model bases φn, 1 � n � M, is the same space
spanned by the orthogonal model bases wn, 1 � n � M. Also
since only the kth row of8M depends on x(k), only the kth row
ofWM depends on x(k).

Further consider the following weighted l1-norm penalised
OLS criterion for the model (8):

Le
(
3M, gM

)
=

∥∥y −WMgM
∥∥2 +

M∑

i=1

λi
∣∣gi

∣∣, (9)

where 3M = diag{λ1, λ2, . . . , λM}, which contains the regular-
isation parameters λi ! ε, 1 � i � M, and ε > 0 is a prede-
termined lower bound for the regularisation parameters. Given
3M , the solution for gM can be obtained by setting the sub-
derivative vector of Le to zero, i.e.

∂Le
∂gM

= 0, yielding

g(olasso)
i =

(∣∣g(LS)
i

∣∣ −
λi/2

w
T
i wi

)

+

sign
(
g(LS)
i

)
(10)

for 1 � i � M, with the usual least square solution given by

g(LS)
i =

w
T
i y

w
T
i wi

, and the operator ( )+

z+ =

{
z, if z > 0,
0, if z ≤ 0.

(11)

Unlike the LASSO (Chen et al., 1998; Tibshirani, 1996), our
objective Le

(
3M, gM

)
is constructed on the orthogonal space

and the l1-norm parameter constraints are associated with the
orthogonal baseswi, 1� i�M. Since the cost function (9) con-

tains sparsity inducing l1-norm, some parameters g(olasso)
i will be

returned as zeros, producing a sparse model in the orthogonal
space spanned by the columns ofWM , which corresponds to a
sparse model in the original space spanned by the columns of
8M .

3. Regularisation parameter optimisation andmodel
construction with LOOMSE
Each OFR stage involves the joint regularisation parameter
optimisation, model term selection and parameter estimation.
The regularisation parameters with respect to their associ-
ated candidate regressors are optimised using the approximate
LOOMSE formula that is derived in Section 3.2, and the regres-
sor with the smallest LOOMSE is selected. This OFR procedure
is inherently suboptimal as it is based on greedy incremental
optimisation.

3.1. Model representation and LOOMSE in nth stage OFR

Consider the OFR modelling process that has produced the
(n − 1)-term model. The model output vector of this (n − 1)-
term model is given by

ŷ
(n−1)

=

n−1∑

i=1

g(olasso)
i wi, (12)

and we denote the corresponding modelling error vector by

e(n−1) = y − ŷ
(n−1)

.
Consider the nth OFR stage where n columns of regres-

sors are constructed as W n = [w1 w2 · · ·wn)], with wi =

[wi(1) wi(2) · · · wi(N)]T. i= 1, ..., n. Clearly, the nth OFR stage
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can be represented by

e(n−1) = gnwn + e(n). (13)

The model form (13) illustrates the fact that the nth OFR stage
is simply to  t a one-variable model using the current model
residual produced after the (n − 1)th stage as the desired sys-

tem output. Since w
T
n ŷ

(n−1)
= 0, it is easy to verify that g(LS)

n =
w
T
ny

w
T
nwn

=
w
T
n e

(n−1)

w
T
nwn

.

The selection of one regressor from the candidate regressors
involves initially generating candidate wn by making each can-
didate regressor to be orthogonal to the (n− 1) orthogonal basis
vectors, wi for 1 � i � n − 1 obtained in the previous (n −

1) OFR stages, followed by evaluating their contributions. Con-
sider the case of 2|wT

ne
(n−1)| > ε. Applying Equation (10) into

Equation (13), we note that clearly as λn decreases away from

2|wT
ne

(n−1)| towards ε, g(olasso)
n increases its magnitude at a lin-

ear rate to λn, from zero to an upper bound |g(B)
n | with

g(B)
n =

(∣∣g(LS)
n

∣∣ −
ε

2wT
nwn

)

+

sign
(
g(LS)
n

)
. (14)

For any candidate regressor, it is vital that we evaluate its poten-
tial model generalisation performance using the most suitable
value of λn. The optimisation of the LOOMSE with respect to
λn is detailed in Section 3.2, based on the idea of the LOO cross-
validation outlined below.

Suppose that we sequentially set aside each data point in
the estimation set DN in turn and estimate a model using the
remaining (N − 1) data points. The prediction error is calcu-
lated on the data point that has not been used in estimation.
That is, for k = 1, 2, …, N, the models are estimated based on
DN \ (x(k), y(k)), respectively, and the outputs are denoted as
ŷ(n−1,−k)(k, λn). Then, the LOO prediction error based on the
kth data sample is calculated as

e(n,−k)(k, λn) = y(k) − ŷ(n−1,−k)(k, λn). (15)

The LOOMSE is de ned as the average of all these prediction
errors, given by J(λn) = E[(e(n, −k)(k, λn))

2]. Thus, the optimal
regularisation parameter for the nth stage is given by

λoptn = arg min
λn

{
J
(
λn

)
=

1

N

N∑

k=1

(
e(n,−k)(k, λn)

)2
}
. (16)

Evaluation of J(λn) by directly splitting the data-set requires
extensive computational e"orts. We show in Section 3.2 that
J(λn) can be approximately calculated without actually sequen-
tially splitting the estimation data-set. Furthermore, we also
show that the optimal value λ

opt
n can be obtained in a closed-

form expression in the orthogonal modelling space.

3.2. Optimal regularisation parameter estimate

We note from Equation (10) that g(olasso)
n = 0 if 2

∣∣
w

T
ne

(n−1)
∣∣ <

λn, and thus a su!cient condition that a given wn may be
excluded from the candidate pool without explicitly deter-
mining λn is 2

∣∣
w

T
ne

(n−1)
∣∣ < ε, which is the regulariser’s lower

bound, a preset value indicating the correlation of the candidate
regressor. Hence, in the following we assume that 2|wT

ne
(n−1)| >

ε, and we have

g(olasso)
n = H−1

n

(
WT

ny − 3nsign(g(LS)
n )/2

)
, (17)

where g(olasso)
n = [g(olasso)

1 g(olasso)
2 · · · g(olasso)

n ]T, sign(gn) =

[sign(g1) sign(g2)###sign(gn)]
T, and Hn = WT

nW n. Note that
Equation (17) is consistent to Equation (10) for all terms with
nonzero gi. In the OFR procedure, any candidate terms wi

producing zero g(olasso)
i will not be selected since they will not

contribute to any reduction in the LOOMSE.
The model residual is de ned by

e(n)(k, λn) = y(k) − (g(olasso))Tw(k) = y(k)

−(yTW n − (sign(g(LS)))T3n/2)H
−1
n w(k), (18)

where w(k) denotes the transpose of the kth row ofW n. If the
data sample indexed at k is removed from the estimation data-
set, the LOO parameter estimator obtained by using only the
(N − 1) remaining data points is given by

g(olasso,−k)
n =

(
H (−k)

n

)−1

×
((
W (−k)

n

)T
y(−k) − 3nsign

(
g(LS,−k)

)
/2

)
(19)

where H (−k)
n =

(
W (−k)

n

)T
W (−k)

n ,W (−k)
n and y(−k) are the resul-

tant regressionmatrix and desired output vector, respectively, by
removing (x(k), y(k)), i.e. (wT(k), y(k)), fromW (k) and y(k).
Thus, we have

H (−k)
n = Hn − w(k)wT(k), (20)

(
y(−k)

)T
W (−k)

n = yTW n − y(k)wT(k). (21)

The LOO error evaluated at k is given by

e(n,−k)(k, λn) = y(k) −
(
g(olasso,−k)

)T
w(k)

= y(k) −
((
y(−k)

)T
W (−k)

n

−
(
sign

(
g(LS,−k)

))T
3n/2

)(
H (−k)

n

)−1
w(k). (22)

Applying the matrix inversion lemma to Equation (20)
yields

(
H (−k)

n

)−1
=

(
Hn − w(k)wT(k)

)−1

= H−1
n +

H−1
n w(k)wT(k)H−1

n

1−w
T(k)H−1

n w(k)
(23)

and

(
H (−k)

n

)−1
w(k) =

H−1
n w(k)

1 − w
T(k)H−1

n w(k)
. (24)

Substituting Equations (21) and (24) into Equation (22) yields

e(n,−k)(k, λn)

= y(k) − (yTW n − y(k)wT(k)

−(sign(g(LS,−k)))T3n/2)
H−1

n w(k)

1 − w
T(k)H−1

n w(k)

=
y(k) − (yTW n − (sign(gLS,−k))T3n/2)H

−1
n w(k)

1 − w
T(k)H−1

n w(k)
. (25)
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Assuming that sign
(
g(LS,−k)
n

)
= sign

(
g(LS)
n

)
holds for most data

samples in DN, and applying Equation (18) into Equation (25),
we have

e(n,−k)(k, λn) = γn(k)e
(n)(k, λn), (26)

where γn(k) = 1

1−
∑n

i=1

(
wi(k)

)2/
w
T
i wi

> 0, andwi(k) is the kth ele-

ment of wi. The LOOMSE can then be calculated as

J
(
λn

)
= 1

N

∑N
k=1 γ 2

n (k)
(
e(n)(k, λn)

)2
. (27)

Note that for sign
(
g(LS,−k)
n

)
and sign

(
g(LS)
n

)
to be di"erent, each

element in g(LS)
n needs to be very close to zero, which is unlikely

since only the model terms satisfying
∣∣
w

T
ne

(n−1)
∣∣ > ε/2 are con-

sidered. Hence, we can treat J(λn) given in Equation (27) as the
exact LOOMSE for any ε that is not too small.

We further represent Equation (18) as

e(n)(k, λn) = η(k) +
λn

2wT
nwn

wn(k)sign
(
g(LS)
n

)
, (28)

where η(k) = e(n−1)(k) − g(LS)
n wn(k) is the model residual

obtained based on the least square estimate at the nth step stage.
By setting ∂J(λn)

∂λn
= 0, we obtain λn in the form of the weighted

least square estimate:

λn = −2sign
(
g(LS)
n

)
w

T
nwnw

T
nŴ

(n)η
/
w

T
nŴ

(n)
wn, (29)

where Ŵ(n) = diag
{
γ 2
n (1), γ 2

n (2), . . . , γ 2
n (N)

}
and η =[

η(1) η(2) · · · η(N)
]T

∈ R
N . Finally, we calculate

λoptn = max
{
min

{
2
∣∣
w

T
ne

(n−1)
∣∣, λn

}
, ε

}
, (30)

in order to satisfy the constraint that ε ≤ λ
opt
n ≤ 2

∣∣
w

T
ne

(n−1)
∣∣.

For λ
opt
n obtained using Equation (30), we consider the following

two cases:

(1) If λ
opt
n = 2

∣∣
w

T
ne

(n−1)
∣∣, then g(olasso)

n = 0, and this candi-
date regressor will not be selected.

(2) If ε ≤ λ
opt
n < 2

∣∣
w

T
ne

(n−1)
∣∣, then calculate J

(
λ
opt
n

)
based

on Equation (27) as the LOOMSE for this candidate
regressor.

3.3. Moving unselectable regressors to the inactive set

From Section 3.2 we noted that a candidate regressor satisfying
2
∣∣
w

T
ne

(n−1)
∣∣ < ε does not need to be considered at the nth stage

of selection. To save computational cost, we de ne the inactive
set S as the index set of the unselectable regressors removed
from the pool of candidates.

In the nth OFR stage, all the candidate regressors in the
candidate pool are made orthogonal to the previously selected
(n− 1) regressors, and the candidatewith the smallest LOOMSE
value is selected as the nth model term wn. Denote any other
candidate regressor as w

(−).

Main results: If
∥∥
w

(−)
∥∥ ·

∥∥e(n−1)
∥∥ < ε

2
, then this candidate

regressor will never be selected in further regression stages, and
hence it can be moved to S .

Proof: At the (n+ 1)thOFR stage, considermaking the regres-
sor w

(−) orthogonal to wn, and de ne

w
(+) = w

(−) −
w

T
nw

(−)

w
T
nwn

wn. (31)

Clearly,

∥∥
w

(+)
∥∥2 =

(
w

(−) −
w
T
nw

(−)

w
T
nwn

wn

)T (
w

(−) −
w
T
nw

(−)

w
T
nwn

wn

)

=
∥∥
w

(−)
∥∥2 −

(
w
T
nw

(−)
)2

w
T
nwn

≤
∥∥
w

(−)
∥∥2. (32)

The model residual vector after the selection of wn is

e(n) = e(n−1) − g(olasso)
n wn, (33)

where g(olasso)
n can be written as

g(olasso)
n =

(
w

T
ne

(n−1) −
λn

2
sign

(
g(LS)
n

))/
w

T
nwn. (34)

Thus, we have

∥∥e(n)
∥∥2 =

∥∥e(n−1)
∥∥2 − 2g(olasso)

n w
T
ne

(n−1) +
(
g(olasso)
n

)2
w

T
nwn,

(35)

(
g(olasso)
n

)2
w

T
nwn =

((
w

T
ne

(n−1)
)2

− λnsign
(
gLS)n

)
w

T
ne

(n−1)

+
λ2n

4

)/
w

T
nwn, (36)

and

2g(olasso)
n w

T
ne

(n−1)

=

(
2
(
w

T
ne

(n−1)
)2

− λnsign
(
g(LS)
n

)
w

T
ne

(n−1)

)/
w

T
nwn.

(37)

Substituting Equations (36) and (37) into Equation (35) yields

∥∥e(n)
∥∥2 =

∥∥e(n−1)
∥∥2 −

((
w

T
ne

(n−1)
)2

−
λ2n
4

)/
w

T
nwn

<
∥∥e(n−1)

∥∥2, (38)

due to the fact that
∣∣
w

T
ne

(n−1)
∣∣ > λn

2
. From Equations (32) and

(38), it can be concluded that

∥∥
w

(+)
∥∥ ·

∥∥e(n)
∥∥ <

∥∥
w

(−)
∥∥ ·

∥∥e(n−1)
∥∥ <

ε

2
. (39)

Since ‖w(+)‖ · ‖e(n)‖ is the upper bound of |(w(+))Te(n)|, this
means that this regressor will not be selected at the (n + 1)th
stage. By induction, it will never be selected in further regression
stages, and hence it can be moved to S .
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4. The proposed l1-POFR algorithm
The proposed l1-POFR algorithm integrates (1) the model
regressor selection based onminimising the LOOMSE; (2) regu-
larisation parameter optimisation also based on minimising the
LOOMSE; and (3) the mechanism of removing unproductive
candidate regressors during the OFR procedure. De ne

8(n−1) =
[
w1 · · ·wn−1 φ(n−1)

n · · · φ
(n−1)
M

]
∈ R

N×M, (40)

Table . The nth stage of the selection procedure.

For {n ≤ j ≤ M} ∩ { j /∈ S}, denote the kth element of φ(n−1)
j as φ

(n−1)
j (k)

and compute α j =
(
φ

(n−1)
j

)T
e(n−1), and β j =

∥∥φ
(n−1)
j

∥∥ ·
∥∥e(n−1)

∥∥.
Step (): If β j < ε/, S = S ∪ j; else if |αj|< ε/, set J( j)n as a very large positive
number so that it will not be selected in Step (). Otherwise goto step ().
Step (): Calculate

κ ( j)
n =

(
φ

(n−1)
j

)T
φ

(n−1)
j , (41)

g(LS, j)
n =

α j

κ
( j)
n

, (42)

Ŵ(n, j) = diag





1
(
ζ (n−1)(1) −

(
φ

(n−1)
j (1)

)2/
κ

( j)
n

)2
,

1
(
ζ (n−1)(2) −

(
φ

(n−1)
j (2)

)2/
κ

( j)
n

)2
, · · · ,

1
(
ζ (n−1)(N) −

(
φ

(n−1)
j (N)

)2/
κ

( j)
n

)2





∈ R
N×N, (43)

η( j) = e(n−1) − g(LS, j)
n φ

(n−1)
j , (44)

λ(opt, j)
n = max

{
min

{
2
∣∣α j

∣∣, −2sign
(
g(LS, j)
n

)
κ ( j)
n

(
φ

(n−1)
j

)T
Ŵ(n, j)η( j)

/(
φ

(n−1)
j

)T
Ŵ(n, j)φ

(n−1)
j

}
, ε

}
. (45)

Step (): If λ(opt, j)
n = 2

∣∣α j

∣∣, set J( j)n as a very large positive number so that it

will not be selected in Step (); otherwise calculate

g(olasso, j)
n =

(∣∣g(LS, j)
n

∣∣ −
λ

(opt, j)
n /2

κ
( j)
n

)

+

sign
(
g(LS, j)
n

)
, (46)

e(n, j) = e(n−1) − g(olasso, j)
n φ

(n−1)
j , (47)

J( j)n =
(
e(n, j)

)T
Ŵ(n, j)e(n, j)/N. (48)

Step (): Find

Jn = J
( j
n
)

n = min
{
J( j)n , {l ≤ j ≤ M} ∩ { j /∈ S}

}
. (49)

Then update e(n) and g(olasso)
n as e(n, j

n
) and g

(olasso, j
n
)

n , respectively. The jnth

and the nth columns of8(n−1) are interchanged, while the jnth column and
the nth column ofAM are interchanged up to the (n− )th row. This effectively
selects the nth regressor in the subset model. The modified Gram–Schmidt
orthogonalisation procedure (Chen et al., ) then calculates the nth row of
the matrixAM and transfers8(n−1) into8(n) as follows:

wn = φ(n−1)
n ,

an, j = w
T
nφ

(n−1)
j

/
w

T
nwn, {n + 1 ≤ j ≤ M} ∩ { j /∈ S},

φ
(n)
j = φ

(n−1)
j − an, jwn, {n + 1 ≤ j ≤ M} ∩ { j /∈ S}.





(50)

Then update ζ (n)(k) = ζ (n−1)(k) −
(
wn(k)

)2/
w

T
nwn for � k� N.

with 8(0) = 8M . If some of the columns in 8(n−1) have been
interchanged, this will still be referred as 8(n−1) for notational
simplicity.

The initial conditions are as follows. Preset ε > 0 as a very
small value. Set e(0) = y, ζ (0)(k)= 1 for 1� k�N, and S as the
empty set$. The nth stage of the selection procedure is listed in
Table 1. The OFR procedure is automatically terminated at the
(ns + 1)th stage when the condition

Jns+1 ≥ Jns (51)

is detected, yielding a subset model with ns signi cant regres-
sors. It is worth emphasising that there always exists a model
size ns, and for n� ns, the LOOMSE Jn decreases as n increases,
while the condition (51) holds (Chen, Hong, Harris, & Sharkey,
2004; Hong et al., 2003).

Note that the LOOMSE is used not only for deriving the
closed form of the optimal regularisation parameter estimate
λ
opt
n but also for selecting the most signi cant model regres-

sor. Speci cally, a regressor is selected as the one that produces
the smallest LOOMSE value as well as o"ering the reduction
in the LOOMSE. After the ns stage when there is no reduc-
tion in the LOOMSE criterion for a few consecutive OFR stages,
the model construction procedure can be terminated. Thus, the
l1-POFR algorithm automatically constructs a sparse ns-term
model, where typically ns ≪ M.

Also note that it is assumed that ε should not be too small
such that the LOOMSE estimation formula can be considered
to be accurate. This means that if ε is set too low, many insignif-
icant candidate regressors will have inaccurate LOOMSE values
for competition. However, we emphasise that these terms with
inaccurate LOOMSE values will not be selected as the winner to
enter the model. Hence in practice we only need to make sure
that ε is not too large, which would introduce unnecessary bias
to the model parameter estimates. Clearly, a relatively larger ε

will save computational costs by (1) resulting in a sparsermodel,
and (2) producing a larger sized inactive set during the OFR
process.

Finally, regarding the computational complexity of the l1-
POFR algorithm, if the unproductive regressors are not removed
to the inactive set S during the OFR procedure, it is well known
that the computational cost is in the order ofO(N) for evaluating
each candidate regressor (Chen et al., 2004). The total compu-
tational cost then needs to be scaled by the number of evalua-
tions in forward regression, which is M(M − ns)/2. By remov-
ing unproductive regressors to S during the OFR procedure,
the computational cost can obviously be reduced signi cantly.
It is not possible to exactly assess the computational cost-saving
due to removing the unproductive regressors, as this is problem-
dependent.

5. Simulation study

Example 5.1: This engine data-set (Billings, Chen, & Back-
house, 1989) contains the 410 data samples of the fuel rack posi-
tion (the input u(k)) and the engine speed (the output y(k)),
collected from a Leyland TL11 turbocharged, direct injection
diesel engine which was operated at a low engine speed. The 410
input and output data points of the engine data-set are plotted in
Figure 1 (a,b). The  rst 210 data samples were used in training
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Table . Comparison of themodelling performance for engine data. The computational cost-saving
is based on the same size of model without removing unproductive regressors in the l-POFR.

Algorithm MSE training set MSE test set Model size Cost saving

LROLS-LOO (Chen et al., ) . .  NA
ε-SVM (τ = ) . .  NA
ε-SVM (τ = .) . .  NA
ε-SVM (τ = ) . .  NA
ε-SVM (τ = .) . .  NA
ε-SVM (τ = ) . .  NA

LASSO (τ = .) . .  NA
LASSO (τ = ) . .  NA
LASSO (τ = .) . .  NA
LASSO (τ = .) . .  NA
LASSO (τ = .) . .  NA

l-POFR (ε = −) . .  %
l-POFR (ε = −) . .  %
l-POFR (ε = −) . .  %
l-POFR (ε = −) . .  %
l-POFR (ε = ) . .  %

and the last 200 data samples for model testing. The previous
study has shown that the data-set can be modelled adequately
using the system input vector x(k) =

[
y(k − 1) u(k − 1) u(k −

2)]T, and the best Gaussian RBF model was provided by the
l2-norm local regularisation -assisted OLS (LROLS) algorithm
based on the LOOMSE (LROLS-LOO) (Chen et al., 2004) which
is quoted in Table 2 for comparison. The ε-SVM algorithm
(Gun, 1998) and the LASSO were also experimented based on
theGaussian kernel with a common variance τ 2. For the ε-SVM,
the Matlab function quadprog.m was used with the algorithm
option set as ‘interior-point-convex’. The tuning parameters in
the ε-SVM algorithm, such as soft margin parameter C (Gun,

1998), were set empirically so that the best possible result was
obtained after several trials. For the LASSO, theMatlab function
lasso.mwas usedwith 10-fold CVbeing used to select the associ-
ated regularisation parameter. For both the ε-SVM and LASSO,
we list the results obtained for a range of kernel width τ values
in Table 2, for comparison.

Similar to the LROLS-LOO algorithm (Chen et al., 2004),
we also used the Gaussian RBF kernel (3) for the proposed l1-
POFR algorithm with an empirically set τ = 2.5 and the RBF
centres ci were formed using all the training data samples. With
a preset value of ε, a sparse model of size ns was automatically
selected when the condition (51) was met. Figure 1(c) illustrates

Table . Comparison of the modelling performance for Boston House Data. The results
were averaged over  realisations and given as mean± standarddeviation.

Algorithm MSE training set MSE test set Model size

ε-SVM (Gun, ) .± . .± . ± .

LROLS-LOO (Chen et al., ) .± . .± . .± .

NonOFR-LOO (Chen et al., ) .± . .± . .± .
LASSO (τ = ) .± . .± . .± .
LASSO (τ = ) .± . .± . .± .
LASSO (τ = ) .± . .± . .± .
LASSO (τ = ) .± . .± . .± .

l-POFR (ε = .) .± . .± . .± .
l-POFR (ε = .) .± . .± . .± .
l-POFR (ε = .) .± . .± . .± .
l-POFR (ε = .) .± . .± . .± .
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Figure . Engine data: (a) the system input u(k), (b) the system output y(k) and (c) the evolution of the size of S with respect to the chosen ε.



INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 2201

the evolution of the size of S with respect to a range of the pre-
set ε values. The test MSE values produced by the sparse mod-
els and the sizes of the models associated with the same range
of ε values are recorded in Table 2, which show that the excel-
lent model generalisation capability of all the models generated
by the proposed algorithm. Moreover, the l1-POFR algorithm
produces the sparsest model.

Example 5.2 This regression benchmark data-set, Boston
Housing Data, is available at the UCI repository (Frank &
Asuncion, 2010). The data-set comprises 506 data points with
14 variables. The previous study (Chen et al., 2009) performed
the task of predicting the median house value from the remain-
ing 13 attributes using the ε-SVM (Gun, 1998), the LROLS-
LOO (Chen et al., 2004) and the nonlinear OFR based on the
LOOMSE (NonOFR-LOO) (Chen et al., 2009). The NonOFR-
LOO algorithm (Chen et al., 2009) constructs a nonlinear RBF
model in theOFRprocedure, where each stage of theOFRdeter-
mines one RBF node’s centre vector and diagonal covariance
matrix by minimising the LOOMSE. In the experiment study
presented in Chen et al. (2009), 456 data points were randomly
selected from the data-set for training and the remaining 50 data
points were used to form the test set. Average results were given
over 100 realisations. For each realisation, 13 input attributes
were normalised so that each attribute had zero mean and stan-
dard deviation of one. We also experimented with the LASSO
supplied by Matlab lasso.m with option set as 10-fold CV to
select the associated regularisation parameter. For the LASSO,
a common kernel width τ was set for constructing the kernel
model from the 456 candidate regressors of each realisation, and
a range of τ values were experimented.

For the l1-POFR, τ = 15 was empirically set for construct-
ing 456 candidate Gaussian RBF regressors of each realisation.
We experimented a range of the preset ε values for the l1-POFR
algorithm, and the results obtained are as summarised inTable 3,
in comparison with the results obtained by the ε-SVM and the
LASSO, as well as the LROLS-LOO and NonOFR-LOO, which
are quoted from the study (Chen et al., 2009).

6. Conclusions

We have developed an e cient data model algorithm, referred
as the l1-norm penalised orthogonal forward regression (l1-
POFR), for linear-in-the-parameternonlinear models based
on a new l1-norm penalised cost function de!ned in the con-
structed orthogonal modelling space. The LOOMSE is used
for simultaneous model term selection and regularisation
parameter estimation in a highly e cient OFR procedure.
Additionally, we have proposed a lower bound of the
regularisation parameters for robust LOOMSE estimation
as well as detecting and removing insigni!cant regressors to
an inactive set along the OFR process, further enhancing the

e ciency of the OFR procedure. Numerical studies have been
utilised to demonstrate the e"ectiveness of this new l1-POFR
approach.
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