IEEE Workshop on Statistical Signal Processing 2009

Downlink MBER Beamforming Transmitter Based on Uplink MBER Beamforming Receiver for TDD-SDMA MIMO Systems

Sheng Chen and Lie-Liang Yang

School of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, UK sqc@ecs.soton.ac.uk lly@ecs.soton.ac.uk

Abbreviations

- $\label{eq:MIMO} \square \ \mathrm{MIMO} \to \mathrm{multiple-input} \ \mathrm{multiple-output}$
- $\square \text{ TDD} \rightarrow \text{time division duplexing}$
- \square BS / MT \rightarrow base station / mobile terminal
- $\hfill \begin{subarray}{ll} \begin{subarray}{ll}$
- \square MUD / MUT \rightarrow multiuser detection / multiuser transmission
- $\hfill \Box$ Tx / Rx \rightarrow transmit / receive
- $\hfill \Box$ MMSE \rightarrow minimum mean square error
- $\label{eq:MBER} \square \text{ MBER} \to \text{minimum bit error rate}$
- $\hfill \Box$ CSI \rightarrow channel state information

- In uplink, BS receiver is capable of implementing sophisticated MUD,
 e.g. Rx beamforming, to mitigate MUI
- □ In downlink, simple MT receivers are unable to perform sophisticated cooperative MUD
- □ BS can carry Tx preprocessing for mitigating MUI, leading to MUT, e.g. Tx beamforming, provided that BS has downlink CSI
- □ For TDD system, there exists dual relationship between MUD and MUT, owing to channel reciprocity of uplink and downlink
- □ Since BS has to implement MUD, it may readily implement downlink MUT based on uplink MUD solution with no computational cost

□ TDD-SDMA MIMO: BS with L antennas \leftrightarrow K single-antenna MTs

- ☆ Uplink channel $\mathbf{H} = [\mathbf{h}_1 \ \mathbf{h}_2 \cdots \mathbf{h}_K]$, and downlink is reciprocal
- ☆ Uplink and downlink Tx symbols both denoted as $\mathbf{s} = [s_1 \ s_2 \cdots s_K]^T$
- ☆ Uplink noise \mathbf{n}_U with $E[\mathbf{n}_U \mathbf{n}_U^H] = 2\sigma_U^2 \mathbf{I}_L$, and downlink noise \mathbf{n}_D with $E[\mathbf{n}_D \mathbf{n}_D^H] = 2\sigma_D^2 \mathbf{I}_K$, where $\sigma_U^2 = \sigma_D^2$

MUD and MUT

 ${\tt I}$ Uplink received signal vector

$$\mathbf{x}_U = \mathbf{H} \, \mathbf{s} + \mathbf{n}_U$$

 \bowtie BS's MUD decision variable vector

$$\mathbf{y}_U = \mathbf{U}^H \mathbf{x}_U = \mathbf{U}^H \mathbf{H} \mathbf{s} + \mathbf{U}^H \mathbf{n}_U$$

with MUD coefficient matrix given by $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \cdots \mathbf{u}_K]$

• Downlink MUT preprocessing matrix at BS

$$\mathbf{D} = [\mathbf{d}_1 \ \mathbf{d}_2 \cdots \mathbf{d}_K]$$

• Downlink receive signal vector or decision variable vector at K MTs

$$\mathbf{y}_D = \mathbf{H}^T \mathbf{D} \, \mathbf{s} + \mathbf{n}_D$$

 \Box Existing duality between MUD and MUT: Given $\sigma_U^2 = \sigma_D^2$,

$D=U^*\Lambda$

where $\mathbf{\Lambda} = \text{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_K\}$ for transmit power constraint, and a simple scheme is $\lambda_k = 1/||\mathbf{u}_k||, 1 \le k \le K$

- Conventional MUD and MUT designs are based on MMSE criteria
 Imply $L \ge K$ full rank systems
- \square We extend this duality to more advanced designs
 - ☆ Specifically, for MBER MUD and MUT designs, duality holds even for L < K rank-deficient systems
 - ☆ Significance: MBER MUT design is expensive, and BS can directly implement MBER MUT based on MBER MUD solution with no cost

□ For notational simplicity, restrict to BPSK. Then sufficient statistics are

 $\Re[\mathbf{y}_U] = \Re[\mathbf{U}^H \mathbf{H} \mathbf{s}] + \Re[\mathbf{U}^H \mathbf{n}_U]$

□ Marginal PDFs of $\Re[y_{U,k}]$, $1 \le k \le K$, are Gaussian distributed with

mean $E[\Re[y_{U,k}]] = \Re[\mathbf{u}_k^H \mathbf{H} \mathbf{s}]$

variance $\operatorname{Var}\left[\Re[y_{U,k}]\right] = \|\mathbf{u}_k\|^2 \sigma_U^2$

 \square Hence BER of MUD with detector weight matrix ${\bf U}$ is

$$P_{Rx}(\mathbf{U}) = \frac{1}{KN_s} \sum_{k=1}^K \sum_{q=1}^{N_s} Q\left(\frac{\operatorname{sgn}(s_k^{(q)}) \Re[\mathbf{u}_k^H \mathbf{Hs}^{(q)}]}{\|\mathbf{u}_k\| \sigma_U}\right)$$

IST Q(●) is Gaussian error function, N_s = 2^K is number of legitimate symbol vectors $\mathbf{s}^{(q)}$, 1 ≤ q ≤ N_s, and $s_k^{(q)}$ kth element of $\mathbf{s}^{(q)}$

 \square User k BER only depends on \mathbf{u}_k

SSP 2009

 $\square \text{ MBER MUD solution } \mathbf{U}_{\text{MBER}} = \begin{bmatrix} \mathbf{u}_{\text{MBER},1} \ \mathbf{u}_{\text{MBER},2} \cdots \mathbf{u}_{\text{MBER},K} \end{bmatrix} \text{ is}$ $\mathbf{U}_{\text{MBER}} = \arg\min_{\mathbf{U}} P_{Rx}(\mathbf{U})$

- BER is invariant to the length of $\mathbf{u}_k \to \text{normalise } \mathbf{u}_k$ to unit-length $\|\mathbf{u}_k\| = 1$
- ${\ensuremath{\,{\tiny \ensuremath{\mathbb{S}}}}}\xspace$ Gradient-based numerical optimisation algorithm to obtain $U_{\rm MBER}$
- **Definition: E-optimum** MBER solution $\mathbf{u}_{\text{MBER},k}$ to \mathbf{u}_k is egocentric-optimum
 - self-centred, i.e. only concerned with user k, without regarding the effect on other users

Definition: O-optimum – All column vectors $\mathbf{u}_{\text{MBER},k}$, $1 \leq k \leq K$, are optimum in some sense (E-optimum) $\rightarrow \mathbf{U}_{\text{MBER}}$ is overall-optimum

□ Sufficient statistics are

$$\Re[\mathbf{y}_D] = \Re[\mathbf{H}^T \mathbf{D} \mathbf{s}] + \Re[\mathbf{n}_D]$$

□ Marginal PDFs of $\Re[y_{D,k}]$, $1 \le k \le K$, are Gaussian distributed with mean $E[\Re[y_{D,k}]] = \Re[\mathbf{h}_k^T \mathbf{D} \mathbf{s}]$

variance
$$\operatorname{Var}\left[\Re[y_{D,k}]\right] = \sigma_D^2$$

 \square Hence BER of MUT with precoding weight matrix ${\bf D}$ is

$$P_{Tx}(\mathbf{D}) = \frac{1}{KN_s} \sum_{k=1}^{K} \sum_{q=1}^{N_s} Q\left(\frac{\operatorname{sgn}(s_k^{(q)}) \Re[\mathbf{h}_k^T \mathbf{D} \mathbf{s}^{(q)}]}{\sigma_D}\right)$$

 ${\tt I\!S\!S}$ User k BER depends on all column vectors of ${\bf D}$

 \Box MBER MUT solution $\mathbf{D}_{\text{MBER}} = \begin{bmatrix} \mathbf{d}_{\text{MBER},1} & \mathbf{d}_{\text{MBER},2} \cdots & \mathbf{d}_{\text{MBER},K} \end{bmatrix}$ is

$$\mathbf{D}_{\text{MBER}} = \arg\min_{\mathbf{D}} P_{Tx}(\mathbf{D})$$

s.t. transmit power constraint is met

- **Definition:** A-optimum MBER solution $\mathbf{d}_{\text{MBER},k}$ to \mathbf{d}_k is altruistic-optimum
 - not self-centred, also pay attention on mitigating its effects on other users
- □ All column vectors $\mathbf{d}_{\text{MBER},k}$, $1 \leq k \leq K$, are optimum in some sense (A-optimum) $\rightarrow \mathbf{D}_{\text{MBER}}$ is overall-optimum

 \Box Given $\mathbf{D} = \mathbf{U}^*$, $\sigma_U^2 = \sigma_D^2$ and $\|\mathbf{u}_k\| = 1$

• Marginal PDFs of $\Re[y_{D,k}], 1 \leq k \leq K$, are Gaussian with

$$E[\Re[y_{D,k}]] = \Re[\mathbf{h}_k^H \mathbf{U} \mathbf{s}], \ \operatorname{Var}[\Re[y_{D,k}]] = \sigma_D^2$$

• while marginal PDFs of $\Re[y_{U,k}], 1 \le k \le K$, are Gaussian with

 $E[\Re[y_{U,k}]] = \Re[\mathbf{u}_k^H \mathbf{H} \mathbf{s}], \ \operatorname{Var}[\Re[y_{U,k}]] = \sigma_D^2$

- □ **Proposition** An E-optimum solution in a MUD is equivalent to an A-optimum solution in the corresponding MUT
- \Box After obtaining U_{MBER} , BS can simply set

 $\mathbf{D}_{\mathrm{MBER}} = \mathbf{U}_{\mathrm{MBER}}^{*}$

to implement optimal MBER MUT with no cost

Full Rank System

- □ BS has L = 4 antennas to support K = 4 singleantenna BPSK users
- BS implements MUD designU (MMSE or MBER)
- BS directly obtains MUT solution as

 $\mathbf{D}=\mathbf{U}^{*}$

- Exact uplink and downlink channel reciprocity
- Identical uplink and downlink noise power

Full Rank System (continue)

 $\hfill \Box$ Uplink and downlink noise mismatch and channel mismatch

Rank Deficient System

- □ BS has L = 4 antennas to support K = 6 singleantenna BPSK users
- BS implements MUD designU (MMSE or MBER)
- BS directly obtains MUT solution as

 $\mathbf{D}=\mathbf{U}^{*}$

- Exact uplink and downlink channel reciprocity
- Identical uplink and downlink noise power

 $\hfill \Box$ Uplink and downlink noise mismatch and channel mismatch

- □ Duality relationship between MUD and MUT can be extended to more advanced MBER designs even for rank-deficient TDD systems, where
 - ${\ensuremath{\mathbb R}}$ Number of MTs supported is more than number of BS antennas available
- □ Since BS has to implement MUD anyway, it can directly obtain MUT according to this duality with no computational cost at all
 - Image This strategy is not overly sensitive to uplink and downlink noise or channel mismatching

