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Outline

o Existing linear beamforming techniques, and motiva-

tions for nonlinear beamforming

o Signal model and optimal Bayesian detection with an

inherent symmetry property for QPSK beamforming

o Complex-valued symmetric radial basis function

classifier by incorporating a priori knowledge

o Multi-class Fisher ratio of class separability mea-

sure based orthogonal forward selection

o Simulation investigation, and performance comparison
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Motivations

L−element
array Rx

...

Tx S

Tx 2
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Tx i
desired...

o Classical beamforming is linear with a
beampattern interpretation of beam-
former’s weight vector

m maximise response at desired user di-
rection and place nulls at interferers’
directions, must L ≥ S

m similar to zero-forcing equalisation,
and suffers from noise enhancement

o Best linear beamforming is minimum bit
error rate (L-MBER)

m significantly enhance achievable system
BER and user capacity

http://www-mobile.ecs.soton.ac.uk
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Motivations (continue)

o Beamforming can be viewed as classification, which classifies received
channel-impaired signal into most-likely transmitted symbol point

o In comparison with linear beamforming, nonlinear detection offers

m significantly better BER performance and much larger user capacity,
at cost of higher complexity

o With posterior or conditional probabilities as generalised beam-
pattern interpretation

m This nonlinear detection can be viewed as nonlinear beamforming

o A practical case for complex-valued radial basis function network

m A strong motivation for grey-box RBF classifier: the art of incorpo-
rating a priori knowledge

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Signal Model

o S single-transmit-antenna users transmit on same carrier, receiver is
equipped with L-element antenna array, channels are non-dispersive

o Received signal vector x(k) = [x1(k) x2(k) · · ·xL(k)]T is

x(k) = Pb(k) + n(k) = x̄(k) + n(k)

o n(k) = [n1(k) n2(k) · · ·nL(k)]T is noise vector, and system matrix

P = [A1s1 A2s2 · · ·AMsS ]

o sm: steering vector of source m, Am: m-th non-dispersive channel tap

o User i is desired user, and transmitted symbol vector b(k) =
[b1(k) b2(k) · · · bS(k)]T with QPSK symbol set

bm(k) ∈ {b[1] = +1+j, b[2] = −1+j, b[3] = −1−j, b[4] = +1−j}, 1 ≤ m ≤ S

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Signal Space

o Denote Nb = 4S legitimate sequences of b(k) as bq, 1 ≤ q ≤ Nb

o Noiseless channel state x̄(k) takes values from set

x̄(k) ∈ X = {x̄q = Pbq, 1 ≤ q ≤ Nb}

which can be divided into four subsets conditioned on bi(k) = b[m]

X [m,i] 4= {x̄[m,i]
q ∈ X , 1 ≤ q ≤ Nsb : bi(k) = b[m]}, 1 ≤ m ≤ 4

o Conditional probabilities of receiving x(k) given bi(k) = b[m] are

p[m,i](x(k)) =
Nsb∑
q=1

βqe
−
‖x(k)−x̄

[m,i]
q ‖2

2σ2
n , 1 ≤ m ≤ 4

Nsb = Nb/4 = 4M−1, noise power is 2σ2
n and all priors βq are equal

o p[m,i](x(k)) can be interpreted as generalised beampatterns

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Optimal Bayesian Detector

o Optimal detection strategy is

b̂i(k) = b[m∗] with m∗ = arg max
1≤m≤4

p[m,i](x(k))

o Define complex-valued Bayesian decision variable

yBay,i(k)
4
= b[1]·p[1,i](x(k))+b[2]·p[2,i](x(k))+b[3]·p[3,i](x(k))+b[4]·p[4,i](x(k))

o Optimal Bayesian detection is: b̂i(k) = sgn(yBay,i(k)), where

sgn(y) =


b[1] = +1 + j, yR ≥ 0 and yI ≥ 0,

b[2] = −1 + j, yR < 0 and yI ≥ 0,

b[3] = −1− j, yR < 0 and yI < 0,

b[4] = +1− j, yR ≥ 0 and yI < 0,

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Symmetry of Bayesian Solution

o Four state subsets satisfy following symmetric properties

X [2,i] = +j · X [1,i], X [3,i] = −1 · X [1,i], X [4,i] = −j · X [1,i]

o Thus Bayesian solution becomes, for x̄[1,i]
q ∈ X [1,i],

yBay,i(k) =
Nsb∑
q=1

{
b[1]β · e

−
‖x(k)−x̄

[1,i]
q ‖2

2σ2
n + b[2]β · e

−
‖x(k)−j·x̄[1,i]

q ‖2

2σ2
n

+b[3]β · e
−
‖x(k)+x̄

[1,i]
q ‖2

2σ2
n + b[4]β · e

−
‖x(k)+j·x̄[1,i]

q ‖2

2σ2
n

}
o If system channel matrix P can be estimated, as in uplink, subset
X [1,i] can be calculated and Bayesian solution is specified

o In downlink, receiver only has access to desired user’s training data,
estimating P is difficult, and other adaptive means has to be adopted

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Symmetric RBF Network

o Consider complex-valued radial basis function network

y(k) =
M∑

q=1

θqφq(x(k))

θq: complex-valued weight, φq(x(k)): complex-valued RBF node

o In view of known symmetric underlying signal space,

φq(x) = b[1] · ϕ(‖x− cq‖/ρ) + b[2] · ϕ(‖x− j · cq‖/ρ)

+b[3] · ϕ(‖x + cq‖/ρ) + b[4] · ϕ(‖x + j · cq‖/ρ)

ϕ(•): real-valued basis function, cq: RBF centre, ρ2: RBF variance

o Task: construct a sparse CV-SRBF classifier when given a block of
training data DK = {x(k), d(k) = bi(k)}K

k=1

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Training Model

o Given ρ2, use cq = x(q), 1 ≤ q ≤ M = K, define modelling residual
ε(q) = d(q)− y(q) ⇒ over training set DK

d = Φθ + ε

d = [d(1) d(2) · · · d(K)]T , ε = [ε(1) ε(2) · · · ε(K)]T , θ = [θ1 θ2 · · · θM ]T

o Complex-valued regression matrix

Φ = [φ1 φ2 · · ·φM ] ∈ CK×M

with column vectors φq = [φq(x(1)) φq(x(2)) · · ·φq(x(K))]T , 1 ≤ q ≤ M

o Goal: select subset model containing Mspa (� M) significant RBF nodes

m RBF variance ρ2: determined via cross validation

m Model size: terminate selection when Mspa = Nsb

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Orthogonal Decomposition

o Orthogonal decomposition of Φ: Φ = ΩA

A =


1 α1,2 · · · α1,M

0 1
. . .

...

...
. . .

. . . αM−1,M

0 · · · 0 1


with complex-valued αq,l, 1 ≤ q < l ≤ M , and orthogonal matrix

Ω = [ω1 ω2 · · ·ωM ] =


ω1,1 ω1,2 · · · ω1,M

ω2,1 ω2,2 · · · ω2,M

...
...

...
...

ωK,1 ωK,2 · · · ωK,M


o Equivalent model

d = Ωγ + ε

with complex-valued weight vector γ = [γ1 γ2 · · · γM ]T = Aθ

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Multi-Class Fisher Ratio

o Divide training data X = {x(k)}K
k=1 into MC = 4 classes

X[q] 4= {x(k) ∈ X : d(k) = b[q]}, 1 ≤ q ≤ MC

Number of samples in X[q] is K [q] with
∑MC

q=1 K [q] = K

o Mean and variance of samples belonging to class X[q] in direction ωl

mq,l =
1

K [q]

K∑
k=1

δ
(
d(k)− b[q]

)
ωk,l, σ2

q,l =
1

K [q]

K∑
k=1

δ
(
d(k)− b[q]

)
(ωk,l −mq,l)

2

where δ(x) = 1 for x = 0 + j0 and δ(x) = 0 for x 6= 0 + j0

o Fisher ratio of class separation between X[p] and X[q] in direction ωl

Fp,q,l = (mp,l −mq,l)
2
/

(
σ2

p,l + σ2
q,l

)
Ratio of interclass difference to intraclass spread

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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OFS Based on FRCSM

o Average Fisher ratio of class separation in direction ωl

Fl =
2

(MC − 1)MC

MC−1∑
p=1

MC∑
q=p+1

Fp,q,l

Fisher ratio provides a good class separability measure

o Orthogonal decomposition makes computation of Fisher ratio of class
separation measure very efficient

o Based on FRCSM, significant RBF nodes is selected in an OFS procedure

o At l-th stage of orthogonal forward selection procedure

m A node is chosen as l-th term in selected CV-SRBF classifier if it
produces largest Fl among candidates ωp, l ≤ p ≤ M

o Procedure is terminated with a sparse classifier of Mspa = Nsb terms

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org
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Simulation Set Up

o Three-element antenna array having half wavelength spacing to support
four QPSK users

o Angular locations of four
users as illustrated

o Simulated channel condi-
tions were Ai = 1 + j0,
1 ≤ i ≤ 4

o All four users had an equal
signal power λ /2λ /2

ouser 4

20
o

70
45

o

15
o

user 1 user 3user 2

o Given each SNR, K = 600 training data were generated to train CV-
SRBF classifier

o Since number of signal states Nsb = 64, Mspa = 64 terms were selected
using OFS based on FRCSM

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org


15School of ECS, University of Southampton, UKWCCI 2008

Simulation Results

(a) User-one bit error rate performance comparison, (b) Influence of RBF
variance ρ2 on bit error rate performance of user-one CV-SRBF classifier
given SNR= 6 dB, and (c) User-four bit error rate performance comparison
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Conclusions

o We propose complex-valued symmetric radial basis

function classifier for QPSK nonlinear beamforming

o Grey-box model by incorporating a priori knowledge

o Orthogonal forward selection based on multi-class

Fisher ratio of class separability measure

o Select sparse CV-SRBF classifier from training data

efficiently with excellet test bit error rate performance

http://www-mobile.ecs.soton.ac.uk
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