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Some Previous Works
e “MBER" almost as old as “adaptive equalisation”
Yao, IEEFE Trans. Information Theory 1972, Shamash & Yao, ICC’74

e More recently
Chen et al., ICC’96, IEE Proc. Communications 1998;
Yeh & Barry, ICC"97, IEEE Trans. Communications 2000;
Mulgrew & Chen, IEEE Symp. ASSPCC 2000, Signal Processing 2001

Mostly on binary modulation (BPSK)

* This work: multilevel modulation schemes (PAM and QAM)
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Motivations

Linear filtering at receiver (equalisation, multiuser detection, beam-forming)
y(k) = y(k) + e(k)

Filter output generally non-Gaussian (sum of Gaussian distributions)

e Zero forcing: Gaussian but noise enhancement too serious

e MMSE: classically regarded as optimal — non-optimal in terms of symbol
error rate!

e Adopt to non-Gaussian view naturally leads to MSER approach
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A Toy Example

Two-tap channel 1.0 + 0.5z7" log10(SER)
with 4-PAM and SNR= 35 dB

Two-tap m = 2 linear equaliser
with decision delay d = 0

Normalized MMSE:
wivsg = [0.9285 — 0.3713]
with log;,(SER) = —2.7593

O udhhbNk o

MSER (a > 0):
Wiser = @[0.8957 — 0.4447]
with log,((SER) = —7.1566
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e MSER solutions form a half line, origin is singular point
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Real-Valued L-PAM Channel

e Channel of length nj,

np—1
r(k) = his(k — i) + n(k)
i=0
s(k)eSE2{sy=20—L—-1,1<1<L}
e Linear equaliser of order m
y(k) = w'r(k) = g(k) + e(k)
r(k) =[rk)--r(k—m+ D] w=[w - wm1]T, and decision delay d

T

x e(k): Gaussian with zero mean and variance o2w’'w, o2 being variance of n(k)

*yk) ey = {T4,1 < ¢ < Ny = L™}, which can be divided into L subsets

A
VEEY eVisk—d)=s},1<I<L
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Two Useful Properties
o Shifting: yl+1 =Y+ 2¢q4

e Symmetry: distribution of ) is symmetric around cgs;.
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* For linear equaliser to work, YV;, 1 <[ < L, must be linearly separable
This is not guaranteed

* In DFE, linear separability is guaranteed
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Observation vector
r(k) = Hs(k) + n(k)

o Combined impulse response ¢’ = w'H = [y ¢1 - - Cppny—2]. Then

y(k) = cas(k —d) + > cis(k — i) + e(k)
i#d

e Optimal decision making

s1, if y(k) < (s1+1)cq,

si, if (s1—1)eq < y(k) < (si+1)cq
forl=2,---L—1,

s, if y(k) > (sp —1)cq.

Unlike binary case, main tap of combined impulse response ¢4 needed!
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SER Expression

PDF of y(k)
2
FESEESERE v Mo}
Py\x) = -~ exp | —
Y Vero,VwTw Ns — 202wTw

where Ng, = N;/L is number of points in ) and ;Ul(l) e V.

Utilizing shifting and symmetric properties, SER of equaliser w is:

Nsp
Pr(w) = 5 3 Qoi(w)

where @ is usual Q-function, v =2(L —1)/L, and

ggl) — cd(sl — 1)

91,i\W) =
(W) onVWIw
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MSER Solution

(O MSER solution is defined as:
WMSER = arg min Pg(w)

e Use simplified conjugated gradient algorithm with periodically reseting search direction
to negative gradient

e Computation is on single subset ), and further simplification by using YV, with s; = 1

e SER is invariant to a positive scaling of w, computationally advantageous to normalize

T

weight vector to w™w = 1.

O Readily extend to DFE (with lower bound SER)

O Block adaptation: identify channel or Parzen window estimate of PDF
py(x) — Pg(w) — optimisation
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An 8-PAM DFE Example
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Stochastic Adaptation

Single-sample estimate of p, ()

mie= o ()

Using instantaneous stochastic gradient — LSER:

(y(k) = ca(k)(s(k — d) — 1))2> y
2p2

w(k+1) =w(k) + M\/Q_L exp <

n

(r(k) ~(s(k —d) — l)ﬁd(k))

é4(k): estimate of ¢q4
hy(k): estimate of d-th column of H

Adaptive gain @ and kernel width p,, need to be set appropriately
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e Distribution of Subset Vs (s5 = 1), 64 points, SNR=34 dB

Weight vector has been normalized to a unit length, a point plotted as a unit impulse.
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e Conditional PDF given s(k — d) = 1, SNR=34 dB. Weight vector normalized,
whissp = [—0.0578 0.2085 0.9763], wlispr = [—0.2365 0.7946 0.5592]
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e Learning Curves of LSER Averaged Over 100 Runs, SNR=34 dB

Initial weight: (a) wywmse, (b) [=0.01 0.01 0.01]7
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Complex-Valued Channel and QAM

Recall ¢ = WTH,

y(k) = cas(k —d) + > cis(k — i) + e(k)
i#d

Generally ¢4 = cr, + jci,, advisable always perform a rotation to be sure c¢;;, = 0:

_ealw

Cd

(O Then I and Q decisions decoupled, real and imaginary parts are PAMs and
Pp(w) = Ppp(w) + Pg; (W) — Ppp(w)Pp,(w)
(O MSER defined as solution that minimises upper-bound SER:

PEB(W) = PER(W) + PE](W)
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In (a) training and decision directed indistinguishable, in (b) dashed curve: after 200-sample
training, switched to decision-directed with §(k — d) substituting s(k — d)

Initial value is critical for convergence, MMSE not necessarily good initial choice
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Conclusions

e MSER equalisation solution for high-level modulation schemes
o Effective sample-by-sample adaptation has been developed
o Unlike MSE surface which is quadratic, SER surface is highly complex

o Initial equaliser weight values can influence convergence speed

e Generalization to adaptive filtering at various communication receivers

o Traditional MMSE filtering sub-optimal because conditional filter output
is non-Gaussian

o Proposed approach is based on non-Gaussian nature and can be referred
to as adaptive minimum error rate filtering
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