IJCNN 2007 Presentation

## **Probability Density Function Estimation Using Orthogonal Forward Regression**

Sheng Chen<sup>†</sup>, Xia Hong<sup>‡</sup> and Chris J. Harris<sup>†</sup>

<sup>†</sup> School of Electronics and Computer Science University of Southampton Southampton SO17 1BJ, UK

> <sup>‡</sup> School of Systems Engineering University of Reading Reading RG6 6AY, UK

□ Motivations/overview for **sparse kernel density** estimation

□ Proposed sparse kernel density estimator:

- Convert **unsupervised** density learning into **constrained regression** by adopting **Parzen window estimate** as desired response
- **O Orthogonal forward regression** based on leave-one-out test mean square error and regularisation to determine structure
- **Multiplicative nonnegative quadratic programming** to calculate kernel weights

□ Empirical investigation and performance comparison



□ For most scientific and engineering problems, understand underlying **probability distributions** is the key to **fully** understand them

Knowing probability density function  $\Leftrightarrow$  fully understanding problem

□ For regression, knowing PDF  $\Rightarrow$  describe underlying process at any operating condition, i.e. completely specify data generating machanism

Least squares approach, for example, is simply based on second-order momnets or statistics of the PDF

□ For classification, knowing class conditional PDFs ⇒ produce optimal Bayes' classifier, i.e. achieves minimum classification error rate

Most classification methods can only approximate this optimal classification solution



- □ Specific engineering topic: **control** 
  - **O** Various optimal controlls are based on controlling certain **moments**
  - C Researchers have realised potential of directly controlling **probability distributions** (Prof Wang of University of Manchester)
  - O If one can **control** PDF, one can control any moments, i.e. implementing any "optimal" control
- □ One of my home topics: **communication receiver detector** 
  - State-of-the-art is **minimum mean square error** design, but it is detection error probability or bit error rate that really matters



- **DF estimation**: given a realisation sample  $D_N = {\mathbf{x}_k}_{k=1}^N$ , drawn from unknown density  $p(\mathbf{x})$ , provide an estimate  $\hat{p}(\mathbf{x})$  of  $p(\mathbf{x})$
- □ PDF estimation is **difficult** 
  - **O** Unlike **regression** or **classification**, this is **unsupervised** learning, no teacher to provide desired response  $y_k = p(\mathbf{x}_k)$  for estimator
- □ Density estimation methods can be classified as
  - **O Parametric** approach: assume specific known PDF form of  $\hat{p}(\mathbf{x}; \boldsymbol{\gamma})$ , and the problem becomes one of fitting unknown parameters  $\boldsymbol{\gamma}$
  - **O** Non-parametric approach: does not impose any assumption on specific PDF form  $\Rightarrow$  approach we adopted



Generic **kernel density estimate** is formulated as

$$\hat{p}(\mathbf{x}; \boldsymbol{\beta}_N, \rho) = \sum_{k=1}^N \beta_k K_{\rho}(\mathbf{x}, \mathbf{x}_k)$$
subject to:  
$$\beta_k \ge 0, \ 1 \le k \le N, \text{ and } \boldsymbol{\beta}_N^T \mathbf{1}_N = 1$$

- □ Classic solution **Parzen window estimate**: minimise divergence criterion between  $p(\mathbf{x})$  and  $\hat{p}(\mathbf{x}; \boldsymbol{\beta}_N, \rho)$  on  $D_N$ , leads to  $\beta_k = \frac{1}{N}, 1 \le k \le N$ 
  - O Place a "conditional" unimodal PDF  $K_{\rho}(\mathbf{x}, \mathbf{x}_k)$  at each  $\mathbf{x}_k$  and average over all samples with equal weighting

Kernel width  $\rho_{\text{Par}}$  has to be determined via cross validation

□ **Remarkably simple and accurate**! but computational cost of calculating a PDF value scales directly with sample size N



- □ From full kernel set to make as many kernel weights to (near) zero as possible based on relevant criteria, yielding a sparse representation
  - [1] Support vector machine based kernel density estimator Convert kernels into cumulative distribution functions and use empirical distribution function calculated on  $D_N$  as desired response, some hyperparameters to tune
  - [2] Reduced set kernel density estimator

Minimise integrated squared error on  $D_N$ , require certain types of kernels

- □ Orthogonal forward regression to select subset of significant kernels based on appropriate criteria, yielding a sparse kernel density estimate
  - [3] OFR minimising training mean square error
  - [4] OFR minimising leave-one-out mean square error with regularisation Both [3] and [4] convert kernels into CDFs and use EDFs as desired response, only select kernels do not cause negative kernel weights and normalise kernel weight vector



□ View PW estimate as "observation" of true density contaminated by some "observation noise" and use it as **desired response** 

$$\hat{p}(\mathbf{x}; \mathbf{1}_N/N, \rho_{\operatorname{Par}}) = \sum_{k=1}^N \beta_k K_{\rho}(\mathbf{x}, \mathbf{x}_k) + \epsilon(\mathbf{x})$$

 $\Box$  Let  $y_k = \hat{p}(\mathbf{x}_k; \mathbf{1}_N/N, \rho_{\text{Par}})$  at  $\mathbf{x}_k \in D_N$ , this model is expressed as

$$y_k = \hat{y}_k + \epsilon(k) = \boldsymbol{\phi}^T(k)\boldsymbol{\beta}_N + \epsilon(k)$$

where  $\boldsymbol{\phi}(k) = [K_{k,1} \ K_{k,2} \cdots K_{k,N}]^T$  with  $K_{k,i} = K_{\rho}(\mathbf{x}_k, \mathbf{x}_i), \epsilon(k) = \epsilon(\mathbf{x}_k)$ 

**This is standard regression** model, which over  $D_N$  can be written as

$$\mathbf{y} = \mathbf{\Phi}oldsymbol{eta}_N + oldsymbol{\epsilon}$$

where  $\mathbf{\Phi} = [\boldsymbol{\phi}_1 \ \boldsymbol{\phi}_2 \cdots \boldsymbol{\phi}_N]$  with  $\boldsymbol{\phi}_k = [K_{1,k} \ K_{2,k} \cdots K_{N,k}]^T$ ,  $\boldsymbol{\epsilon} = [\epsilon(1) \ \epsilon(2) \cdots \epsilon(N)]^T$ ,  $\mathbf{y} = [y_1 \ y_2 \cdots y_N]^T$ 



 $\Box$  An orthogonal decomposition of regression matrix is  $\Phi = WA$ , where

 $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \cdots \mathbf{w}_N]$ 

with orthogonal columns satisfying  $\mathbf{w}_i^T \mathbf{w}_j = 0$ , if  $i \neq j$ , and

$$\mathbf{A} = \begin{bmatrix} 1 & a_{1,2} & \cdots & a_{1,N} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{N-1,N} \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

□ **Regression model** can alternatively be expressed as

$$\mathbf{y} = \mathbf{W} \mathbf{g}_N + oldsymbol{\epsilon}$$

where new weight vector  $\mathbf{g}_N = [g_1 \ g_2 \cdots g_N]^T$  satisfies  $\mathbf{A}\boldsymbol{\beta}_N = \mathbf{g}_N$ 

*IJCNN 2007* 



### **Proposed Algorithm**

- □ Use OFR algorithm based on leave-one-out mean square error and regularisation to **automatically** select  $N_s$  significant kernels  $\Phi_{N_s}$
- □ Associated kernel weight vector  $\beta_{N_s}$  is calculated using multiplicative nonnegative quadratic programming to solve constrained nonnegative quadratic programming

$$\min_{oldsymbol{ heta}_{N_s}} \{ rac{1}{2} oldsymbol{eta}_{N_s}^T \mathbf{B}_{N_s} oldsymbol{eta}_{N_s} - \mathbf{v}_{N_s}^T oldsymbol{eta}_{N_s} \}$$

s.t. 
$$\boldsymbol{\beta}_{N_s}^T \mathbf{1}_{N_s} = 1 \text{ and } \beta_i \ge 0, \ 1 \le i \le N_s,$$

where  $\mathbf{B}_{N_s} = \mathbf{\Phi}_{N_s}^T \mathbf{\Phi}_{N_s}$  is selected subset design matrix,  $\mathbf{v}_{N_s} = \mathbf{\Phi}_{N_s}^T \mathbf{y}$ 

□ Since  $N_s \ll N$ , MNQP algorithm requires little extra computation and it may set some kernel weights to (near) zero, further reduce model size



□ For density estimation, data set of N samples was used to construct kernel density estimate, and separate test data set of  $N_{\text{test}} = 10,000$ samples was used to calculate  $L_1$  test error for resulting estimate

$$L_1 = \frac{1}{N_{\text{test}}} \sum_{k=1}^{N_{\text{test}}} \left| p(\mathbf{x}_k) - \hat{p}(\mathbf{x}_k; \boldsymbol{\beta}_{N_s}, \rho) \right|$$

Experiment was repeated  $N_{\rm run}$  random runs

□ For two-class **classification**,  $\hat{p}(\mathbf{x}; \boldsymbol{\beta}_{N_s}, \rho | C0)$  and  $\hat{p}(\mathbf{x}; \boldsymbol{\beta}_{N_s}, \rho | C1)$ , two class conditional PDF estimates, were estimated, and Bayes' decision

$$\begin{array}{ll} \text{if } \hat{p}(\mathbf{x}; \boldsymbol{\beta}_{N_s}, \rho | \mathbf{C0}) \geq \hat{p}(\mathbf{x}; \boldsymbol{\beta}_{N_s}, \rho | \mathbf{C1}), & \mathbf{x} \in \mathbf{C0} \\ & \text{else}, & \mathbf{x} \in \mathbf{C1} \end{array} \right\}$$

was then applied to test data set



□ Density to be estimated was **mixture** of Gaussian and Laplacian distributions

$$p(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-2)^2}{2}} + \frac{0.7}{4}e^{-0.7|x+2|}$$

 $N = 100 \text{ and } N_{\rm run} = 200$ 

□ Performance comparison in terms of  $L_1$  test error and number of kernels required, quoted as mean ± standard deviation over 200 runs

| method                 | $L_1$ test error                     | kernel number |
|------------------------|--------------------------------------|---------------|
| <b>PW</b> estimator    | $(1.9503 \pm 0.5881) \times 10^{-2}$ | $100 \pm 0$   |
| SKD estimator [4]      | $(2.1785 \pm 0.7468) \times 10^{-2}$ | $4.8\pm0.9$   |
| proposed SKD estimator | $(1.9436 \pm 0.6208) \times 10^{-2}$ | $5.1 \pm 1.3$ |



True density (dashed), (a) a PW estimate (solid) and (b) a proposed SKD estimate (solid)



*IJCNN 2007* 



School of ECS, University of Southampton, UK

- □ http://www.stats.ox.ac.uk/PRNN/: two-class classification problem in two-dimensional feature space
- □ Training set contained 250 samples with 125 points for each class, test set had 1000 points with 500 samples for each class, and optimal Bayes test error rate based on true probability distribution was 8%
- Performance comparison in terms of test error rate and number of kernels required

| method                | $\hat{p}(ullet C0)$ | $\hat{p}(\bullet C1)$ | test error rate |
|-----------------------|---------------------|-----------------------|-----------------|
| <b>PW</b> estimate    | 125 kernels         | 125 kernels           | 8.0%            |
| SKD estimate [4]      | 5 kernels           | 4 kernels             | 8.3%            |
| proposed SKD estimate | 6 kernels           | 5 kernels             | 8.0%            |



Decision boundary of (a) PW estimate, and (b) proposed SKD estimate, where circles and crosses represent class-1 and class-0 training data, respectively



IJCNN 2007



School of ECS, University of Southampton, UK

□ Density to be estimated was **mixture** of three Gaussian distributions

$$p(\mathbf{x}) = \frac{1}{3} \sum_{i=1}^{3} \frac{1}{(2\pi)^{6/2}} \frac{1}{\det^{1/2} |\mathbf{\Gamma}_i|} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{\Gamma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)}$$

$$\begin{split} \boldsymbol{\mu}_1 &= [1.0 \ 1.0 \ 1.0 \ 1.0 \ 1.0 \ 1.0 \ 1^T, \ \boldsymbol{\Gamma}_1 = \text{diag}\{1.0, 2.0, 1.0, 2.0, 1.0, 2.0\} \\ \boldsymbol{\mu}_2 &= [-1.0 \ -1.0 \ -1.0 \ -1.0 \ -1.0 \ -1.0 \ 1^T, \ \boldsymbol{\Gamma}_2 = \text{diag}\{2.0, 1.0, 2.0, 1.0, 2.0, 1.0\} \\ \boldsymbol{\mu}_3 &= [0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0^T, \ \boldsymbol{\Gamma}_3 = \text{diag}\{2.0, 1.0, 2.0, 1.0, 2.0, 1.0\} \end{split}$$

□ N = 600, performance comparison in terms of  $L_1$  test error and number of kernels required, quoted as mean ± standard deviation over  $N_{\rm run} = 100$  runs

| method                 | $L_1$ test error                     | kernel number |
|------------------------|--------------------------------------|---------------|
| <b>PW</b> estimator    | $(3.5195 \pm 0.1616) \times 10^{-5}$ | $600 \pm 0$   |
| SKD estimator [4]      | $(4.4781 \pm 1.2292) \times 10^{-5}$ | $14.9\pm2.1$  |
| proposed SKD estimator | $(3.1134 \pm 0.5335) \times 10^{-5}$ | $9.4 \pm 1.9$ |



- □ A regression-based **sparse kernel density estimator** has been proposed
  - O Density learning is converted into **constrained regression** using Parzen window estimate as desired response
  - O Orthogonal forward regression based on leave-one-out test mean square error and regularisation is employed to determine structure of kernel density estimate
- Effectiveness of proposed sparse kernel density estimator has been demonstrated using simulation



## THANK YOU.

# The support of the United Kingdom Royal Academy of Engineering is gratefully acknowledged



