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Abbreviations

o MIMO → multiple-input multiple-output

o ML → maximum likelihood

o OHRSA → optimised hierarchy reduced search algorithm

o PSO → particle swarm optimisation

o LSCE → least squares channel estimate

o MSE → mean square error

o MCE → mean channel error

o BER → bit error rate

o QPSK → quadrature phase shift keying

o RWBS → repeated weighted boosting search

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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MIMO System Model

o nT -transmitters nR-receivers MIMO model

y(k) = Hs(k) + n(k)

+ QPSK data symbols vector s(k) = [s1(k) s2(k) · · · snT
(k)]T with

E
[
|sm(k)|2

]
= σ2

s

+ Complex-valued Gaussian white noise vector given by n(k) =
[n1(k) n2(k) · · ·nnR

(k)]T with E
[
n(k)nH(k)

]
= 2σ2

nInR
.

+ MIMO channel matrix H = [hp,m], 1 ≤ p ≤ nR and 1 ≤ m ≤ nT , with
hp,m being channel coefficient linking mth transmitter to pth receiver

o Channel taps hp,m are independent of each other, complex-valued Gaus-
sian distributed with E

[
|hp,m|2

]
= 1

o Signal-to-noise ratio (SNR) is defined by Eb/No = σ2
s/2σ2

n

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Joint ML Blind Scheme

o PDF of Rx data Y conditioned on channel H and Tx symbols S:

p(Y|H,S) =
1

(2πσ2
n)nR×L

e
− 1

2σ2
n

∑L

k=1
‖y(k)−Hs(k)‖2

+ Received nR × L data matrix Y = [y(1) y(2) · · ·y(L)]

+ Transmitted nT × L symbol matrix S = [s(1) s(2) · · · s(L)]

o Joint ML channel and data estimation:

(Ŝ, Ĥ) = arg
{

min
Š,Ȟ

JML(Š, Ȟ)
}

with cost function

JML(Š, Ȟ) =
1

nR × L

L∑
k=1

∥∥y(k)− Ȟ š(k)
∥∥2

* Computationally prohibitive

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Iterative Decomposition

o Outer-level Optimisation:

+ A search algorithm, such as PSO, searches MIMO channel space

+ to find a global optimal channel estimate Ĥ by minimising MSE

JMSE(Ȟ) = JML(Ŝ(Ȟ), Ȟ)

+ Ŝ(Ȟ) is ML data estimate given channel Ȟ, provided by inner level

o Inner-level Optimisation:

* Given channel Ȟ by outer level

* OHRSA detector finds ML data estimate Ŝ(Ȟ)

* and feeds back ML metric JMSE(Ȟ) to outer level

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Semi Blind Scheme

o Use K training data to provide LSCE

ȞLSCE = YKSH
K

(
SKSH

K

)−1

for adding search algorithm at outer level

+ YK = [y(1) y(2) · · ·y(K)]

+ SK = [s(1) s(2) · · · s(K)]

o To maintain throughput,

+ use minimum number of training symbols, K = nT

o Design SK to have nT orthogonal rows

+ most efficient estimate and no need for matrix inversion

o Semi blind method can resolve

+ estimation and decision ambiguities inherented in pure blind method

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Particle Swarm Optimisation

o Solving optimisation problem

Ĥ = arg min
Ȟ∈PnR×nT

F (Ȟ)

+ Cost function F (Ȟ) = JMSE(Ȟ)

+ Search space PnR×nT with

P = [−Pmax, Pmax]+j[−Pmax, Pmax]

o A swarm of particles, {H(l)
i }S

i=1, are

evolved in search space

+ S is swarm size

+ Index l denotes iteration step

o Each particle has a velocity V
(l)
i ∈

VnR×nT to direct its flying, where

V = [−Vmax, Vmax]+j[−Vmax, V max]

Update velocities

Modify
velocity

Velocity
approaches zero
or out of limits?

Yes

No
Update positions

out of bounds?
positionModify

position
Yes

No

Initialise particles
{ } S

i=1

Evaluate costs {F(       )}i=1
update{ }

Yes
Output solution Gb

No

i=1

S

S

Terminate?
l=l+1 A new iteration

(l)
i and

l=0

(0)

(l)

V

Gb

iH (l)
i

H (l)
i

(l)Pb
Hi

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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PSO Aided Scheme

o a) Initialisation Set iteration index l = 0,

+ H(l)
1 = ȞLSCE

+ Randomly generate rest of particles:

H(l)
i = ȞLSCE + η(1nR×nT

+ j1nR×nT
), 2 ≤ i ≤ S

where η is a uniformly distributed random variable in [−α, α]

o b) Evaluation Particle H(l)
i has cost F (H(l)

i )

+ Each particle remembers its best position visited so far, which defines
cognitive information Pb(l)

i

+ Every particle knows best position visited among entire swarm, which
provides social information Gb(l)

+ Cognitive information Pb(l)
i , 1 ≤ i ≤ S, and social information Gb(l)

are updated, given new costs {F (H(l)
i )}S

i=1

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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PSO Aided Scheme (continue)

o c) Update Velocities and positions are updated

V(l+1)
i = wI∗V(l)

i +rand()∗c1∗(Pb(l)
i −H(l)

i )+rand()∗c2∗(Gb(l)−H(l)
i )

H(l+1)
i = H(l)

i + V(l+1)
i

+ If V(l+1)
i → zero, it is reinitialised randomly within VnR×nT

+ If V(l+1)
i is outside VnR×nT , it is moved back inside velocity space

+ If H(l+1)
i is outside search space, it is moved back inside PnR×nT

o d) Termination If maximum number of iterations, Imax, is reached,
terminate with solution Gb(Imax); otherwise, l = l + 1 and go to b)

Complexity for block length L

C = NOHRSA × COHRSA(L) = S × Imax × COHRSA(L)

COHRSA(L): OHRSA complexity, and NOHRSA: number of OHRSA evaluations

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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PSO Algorithmic Parameters

o Inertial weight wI = 0, other alternative is wI = rand() or wI set to a
small positive constant

o Empirical time varying acceleration coefficients

c1 = (2.5− 0.5) ∗ l/Imax + 0.5

c2 = (0.5− 2.5) ∗ l/Imax + 2.5

o Search limit Pmax = 1.8, which lies between 2 to 3 standard deviations
of true channel tap distribution

o Empirical velocity limit Vmax = 1.0

o Empirical control parameter α = 0.15 in channel population initialisation

o S = 20 is appropriate with Imax = 50 sufficient

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Simulation Example

o QPSK MIMO: nT = 4 and

nR = 4

o S = 20 and Imax = 50:

NOHRSA = 1000

o Results averaged over 50

channel realisations

o Performance metrics:

+ BER

+ MSE JMSE(Ȟ)

+ Mean channel error

(MCE)

JMCE(Ȟ) = ‖H− Ȟ‖2

BER Comparison

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Convergence Performance

MSE MCE

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Comparison

o Previous RWBS based semi-blind scheme

M. Abuthinien, S. Chen and L. Hanzo, “Semi-blind joint maximum likelihood

channel estimation and data detection for MIMO systems,” IEEE Signal Pro-

cessing Letters, vol.15, pp.202–205, 2008.

+ Convergence in NOHRSA = 1200

o Proposed PSO based semi-blind scheme

+ Convergence in NOHRSA = 1000

+ Performance is slightly better

o Proposed PSO-based semi-blind method achieved 20% saving in compu-
tation, compared with RWBS based semi-blind scheme

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/
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Summary

o Novel semi-blind joint ML channel estimation and data detection has
been proposed for MIMO

+ PSO algorithm is invoked at upper level to identify unknown MIMO
channel

+ Enhanced ML sphere detector, OHRSA, is used at lower level for ML
data detection

+ Minimum pilot overhead is employed to aid initialisation of PSO-
based channel estimator

o Compared with existing state-of-the-art, PSO-aided semi-blind scheme
imposes significantly lower complexity in attaining joint ML solution

http://www-mobile.ecs.soton.ac.uk
http://www.ssp2009.org/

