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Outline

❏ Existing linear beamforming techniques, and motiva-

tions for nonlinear beamforming or detection

❏ Signal model and optimal Bayesian detection with an

inherent symmetry property

❏ Symmetric radial basis function network for nonlinear

beamforming, and adaptive algorithms

❏ Simulation investigation, and performance comparison
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Motivations

❏ Existing beamforming techniques are linear, and classical beamforming

technique is based on minimum mean square error (L-MMSE)

❏ State-of-the-art for linear beamforming is minimum bit error rate (L-

MBER) technique, and in comparsion with L-MMSE it offers

❍ Better system BER performance, and larger user capacity

❏ Beamforming can be viewed as classification, which classifies received

channel-impaired signal into most-likely transmitted symbol point

❏ In comparison with linear beamforming, nonlinear detection offers

❍ significantly better system BER performance, and larger user capacity

❍ at cost of higher complexity

http://www-mobile.ecs.soton.ac.uk
http://www.icc2007.org
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Illustration
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Signal Model

❏ M single-transmit-antenna users transmit on same carrier, receiver is

equipped with L-element antenna array, channels are non-dispersive

❏ Received signal vector x(k) = [x1(k) x2(k) · · ·xL(k)]T is

x(k) = Pb(k) + n(k) = x̄(k) + n(k)

❏ n(k) = [n1(k) n2(k) · · ·nL(k)]T is channel noise vector, system matrix

P = [A1s1 A2s2 · · ·AMsM ]

❏ si is steering vector of source i, Ai is i-th non-dispersive channel tap

❏ BPSK users bi(k) ∈ {−1, +1}, 1 ≤ i ≤ M , transmitted symbol vector

b(k) = [b1(k) b2(k) · · · bM (k)]T

❏ User 1 is desired user

http://www-mobile.ecs.soton.ac.uk
http://www.icc2007.org
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Optimal Bayesian Detector

❏ Denote Nb = 2M legitimate sequences of b(k) as bq, 1 ≤ q ≤ Nb, and

first element of bq, related to desired user, as bq,1

❏ Noiseless channel state x̄(k) takes values from set

x̄(k) ∈ X = {x̄q = Pbq, 1 ≤ q ≤ Nb}

❏ Optimal decision is b̂1(k) = sgn(yBay(k)), with Bayesian detector

yBay(k) = fBay(x(k)) =

Nb
∑

q=1

sgn(bq,1)βqe
− ‖x(k)−x̄q‖2

2σ2
n

❏ State set can be divided into two subsets conditioned on value of b1(k)

X (±) = {x̄
(±)
i ∈ X , 1 ≤ i ≤ Nsb : b1(k) = ±1}

where Nsb = Nb/2 = 2M−1, and noise power is 2σ2
n

http://www-mobile.ecs.soton.ac.uk
http://www.icc2007.org
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Symmetry of Bayesian Solution

❏ Two state subsets are symmetric, as

X (+) = −X (−)

❏ Thus Bayesian detector has odd symmetry, as fBay(−x(k)) =

−fBay(x(k)), and it takes form

yBay(k) =

Nsb
∑

q=1

βq

(

e
−

‖x(k)−x̄

(+)
q ‖2

2σ2
n − e

−
‖x(k)+x̄

(+)
q ‖2

2σ2
n

)

since all states are equiprobable, all coefficients βq are equal

❏ If system channel matrix P can be estimated, as in uplink, subset

X (+) can be calculated and Bayesian solution is specified

❏ In downlink, receiver only has access to desired user’s training data,

estimating P is difficult, and other adaptive means has to be adopted

http://www-mobile.ecs.soton.ac.uk
http://www.icc2007.org
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Symmetric RBF Network

❏ Consider generic radial basis function network

yRBF(k) = fRBF(x(k);w) =

Nc
∑

i=1

θiφi(x(k))

❏ where Nc is number of RBF units, with novel symmetric RBF node

φi(x) = ϕ(x; ci, σ
2
i ) − ϕ(x;−ci, σ

2
i )

❏ ϕ(•) is usual RBF function ⇒ in standard RBF network, RBF node

would simply be φi(x) = ϕ(x; ci, σ
2
i )

❏ Parameter vector w includes all real-valued weights θi, complex-valued

centre vectors ci, and positive variances σ2
i

❏ Like Bayesian detector, symmetric RBF network has odd symmetry

fRBF(−x(k);w) = −fRBF(x(k);w)

http://www-mobile.ecs.soton.ac.uk
http://www.icc2007.org
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Nonlinear Least Bit Error Rate Algorithm

❏ Theory: given a block of training data {x(k), b1(k)},

❍ Use Parzen window estimate with Gaussian kernels to estimate prob-

ability density function of RBF network output

❍ From this estimate PDF, obtain estimated detector’s bit error rate

❍ Minimise this estimated BER with respect to RBF parameters w

❏ Adopting stochastic or one-sample implementation leads to NLBER







yRBF(k) = fRBF(x(k);w(k − 1))

w(k) = w(k − 1) + µ√
2πρ

e
−

y2
RBF

(k)

2ρ2 sgn(b1(k))∂fRBF(x(k);w(k−1))
∂w

where µ is step size or adaptive gain, ρ is kernel width

❏ As number of users, M , in system is usually known, number of RBF units

can be set to Nc ≤ Nsb = 2M−1

http://www-mobile.ecs.soton.ac.uk
http://www.icc2007.org
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Clustering

❏ Using cluster-variantion enhanced clustering to update RBF centres

ci(k) = ci(k − 1) + µcMi(x̌(k))(x̌(k) − ci(k − 1))

where x̌(k) = sgn(b1(k))x(k), and µc is step size

❏ Membership function Mi(x) is defined as

Mi(x) =







1, if v̄i‖x− ci‖
2 ≤ v̄j‖x − cj‖

2, ∀j 6= i

0, otherwise

❏ Cluster variations v̄i are update with rule

v̄i(k) = µv v̄i(k − 1) + (1 − µv)Mi(x̌(k))‖x̌(k) − ci(k − 1)‖2

where µv is a constant slightly less than 1.0, e.g. µv = 0.995, and initial

variations v̄i(0) are set to same small number

http://www-mobile.ecs.soton.ac.uk
http://www.icc2007.org
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Simulation Example One

❏ 2-element array with half

wavelength spacing, four

equal-power BPSK users

❏ Location of users in terms

of angle of arrival

user 1 2 3 4

AOA 0
◦
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◦

−30
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−45
◦

❏ Symmetric RBF network

has Nc = Nsb = 8 sym-

metric RBF units

❏ Nonlinear least bit er-

ror rate algorithm
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NLBER for Example One

(a) learning curve of NLBER-RBF detector with Nc = 8 averaged on 10

runs, and (b) influence of symmetric RBF model size Nc, where SNR= 7 dB
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Simulation Example One

❏ 2-element array with half

wavelength spacing, four

equal-power BPSK users

❏ Location of users in terms

of angle of arrival

user 1 2 3 4

AOA 0
◦

20
◦

−30
◦

−45
◦

❏ Symmetric RBF network

has Nc = Nsb = 8 sym-

metric RBF units

❏ Clustering algorithm, all

RBF variances σ2
i = σ2

n
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Clustering for Example One

(a) learning curve1 of clustering-RBF detector with Nc = 8 averaged on 5

runs, and (b) influence of RBF variance, where SNR= 7 dB
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1Euclidean distance(k) is defined as sum of ‖ci(k) − x̄
(+)
i

‖2 over 1 ≤ i ≤ Nsb

http://www-mobile.ecs.soton.ac.uk
http://www.icc2007.org


15School of ECS, University of Southampton, UKICC 2007

Simulation Example Two

❏ 3-element array with half

wavelength spacing, five

equal-power BPSK users

❏ Location of users in terms

of angle of arrival
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❏ Symmetric RBF network

has Nc = Nsb = 16 sym-

metric RBF units

❏ Nonlinear least bit er-

ror rate algorithm
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NLBER for Example Two

(a) learning curve of NLBER-RBF detector with Nc = 16 averaged on 10

runs, and (b) influence of symmetric RBF model size Nc, where SNR= 5 dB
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Simulation Example Two

Learning curve of clustering-RBF

detector with Nc = 16 averaged on

5 runs, where SNR= 5 dB
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Clustering for Example Two

(a) influence of clustering-RBF model size Nc with RBF variance set to σ2
n,

and (b) influence of RBF variance with Nc = 16, where SNR= 5 dB
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Conclusions

❏ Nonlinear beamforming achieves significantly smaller

system bit error rate and larger user capacity

❏ Optimal Bayesian beamforming solution has an inher-

ent symmetry structure

❏ A novel symmetric radial basis function network has

been proposed for nonlinear beamforming

❏ Two adaptive algorithms for downlink senario

✰ Nonlinear least bit error rate

✰ Cluster-variation enhanced clustering

http://www-mobile.ecs.soton.ac.uk
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THANK YOU.
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