ICC 2007 Presentation

Adaptive Radial Basis Function Detector for Beamforming

Sheng Chen, Khaled Labib, Rong Kang and Lajos Hanzo

School of Electronics and Computer Science University of Southampton Southampton SO17 1BJ, UK

- □ Existing linear beamforming techniques, and motivations for **nonlinear** beamforming or detection
- □ Signal model and optimal Bayesian detection with an inherent **symmetry** property
- □ Symmetric radial basis function network for nonlinear beamforming, and adaptive algorithms

 $\hfill\square$ Simulation investigation, and performance comparison

- □ Existing beamforming techniques are **linear**, and classical beamforming technique is based on minimum mean square error (L-MMSE)
- □ State-of-the-art for linear beamforming is minimum bit error rate (L-MBER) technique, and in comparison with L-MMSE it offers
 - **)** Better system BER performance, and larger user capacity
- □ Beamforming can be viewed as **classification**, which classifies received channel-impaired signal into most-likely transmitted symbol point
- \Box In comparison with linear beamforming, **nonlinear** detection offers
 - > Significantly better system BER performance, and larger user capacity> at cost of higher complexity

Illustration

ICC 2007

1

School of ECS, University of Southampton, UK

- \Box *M* single-transmit-antenna users transmit on same carrier, receiver is equipped with *L*-element **antenna array**, channels are non-dispersive
- \square Received signal vector $\mathbf{x}(k) = [x_1(k) \ x_2(k) \cdots x_L(k)]^T$ is

$$\mathbf{x}(k) = \mathbf{P}\mathbf{b}(k) + \mathbf{n}(k) = \bar{\mathbf{x}}(k) + \mathbf{n}(k)$$

 \square $\mathbf{n}(k) = [n_1(k) \ n_2(k) \cdots n_L(k)]^T$ is channel noise vector, system matrix

$$\mathbf{P} = [A_1 \mathbf{s}_1 \ A_2 \mathbf{s}_2 \cdots A_M \mathbf{s}_M]$$

□ \mathbf{s}_i is steering vector of source *i*, A_i is *i*-th non-dispersive channel tap □ BPSK users $b_i(k) \in \{-1, +1\}, 1 \leq i \leq M$, transmitted symbol vector

$$\mathbf{b}(k) = [b_1(k) \ b_2(k) \cdots b_M(k)]^T$$

❑ User 1 is **desired** user

- □ Denote $N_b = 2^M$ legitimate sequences of $\mathbf{b}(k)$ as \mathbf{b}_q , $1 \le q \le N_b$, and first element of \mathbf{b}_q , related to desired user, as $b_{q,1}$
- \square Noiseless **channel state** $\bar{\mathbf{x}}(k)$ takes values from set

$$\bar{\mathbf{x}}(k) \in \mathcal{X} = \{ \bar{\mathbf{x}}_q = \mathbf{P} \mathbf{b}_q, 1 \le q \le N_b \}$$

Optimal decision is $\hat{b}_1(k) = \operatorname{sgn}(y_{\operatorname{Bay}}(k))$, with **Bayesian detector**

$$y_{\text{Bay}}(k) = f_{\text{Bay}}(\mathbf{x}(k)) = \sum_{q=1}^{N_b} \text{sgn}(b_{q,1})\beta_q e^{-\frac{\|\mathbf{x}(k) - \bar{\mathbf{x}}_q\|^2}{2\sigma_n^2}}$$

 \Box State set can be divided into two **subsets** conditioned on value of $b_1(k)$

$$\mathcal{X}^{(\pm)} = \{ \bar{\mathbf{x}}_i^{(\pm)} \in \mathcal{X}, 1 \le i \le N_{sb} : b_1(k) = \pm 1 \}$$

where $N_{sb} = N_b/2 = 2^{M-1}$, and noise power is $2\sigma_n^2$

Two state subsets are **symmetric**, as

$$\mathcal{X}^{(+)} = -\mathcal{X}^{(-)}$$

□ Thus Bayesian detector has **odd** symmetry, as $f_{\text{Bay}}(-\mathbf{x}(k)) = -f_{\text{Bay}}(\mathbf{x}(k))$, and it takes form

$$y_{\text{Bay}}(k) = \sum_{q=1}^{N_{sb}} \beta_q \left(e^{-\frac{\|\mathbf{x}(k) - \bar{\mathbf{x}}_q^{(+)}\|^2}{2\sigma_n^2}} - e^{-\frac{\|\mathbf{x}(k) + \bar{\mathbf{x}}_q^{(+)}\|^2}{2\sigma_n^2}} \right)$$

since all states are equiprobable, all coefficients β_q are equal

- □ If system channel matrix P can be estimated, as in uplink, subset $\mathcal{X}^{(+)}$ can be calculated and Bayesian solution is specified
- □ In **downlink**, receiver only has access to desired user's training data, estimating **P** is difficult, and other adaptive means has to be adopted

□ Consider generic **radial basis function** network

$$y_{\text{RBF}}(k) = f_{\text{RBF}}(\mathbf{x}(k); \mathbf{w}) = \sum_{i=1}^{N_c} \theta_i \phi_i(\mathbf{x}(k))$$

 \Box where N_c is number of RBF units, with novel symmetric RBF node

$$\phi_i(\mathbf{x}) = \varphi(\mathbf{x}; \mathbf{c}_i, \sigma_i^2) - \varphi(\mathbf{x}; -\mathbf{c}_i, \sigma_i^2)$$

- $\Box \varphi(\bullet)$ is usual RBF function \Rightarrow in standard RBF network, RBF node would simply be $\phi_i(\mathbf{x}) = \varphi(\mathbf{x}; \mathbf{c}_i, \sigma_i^2)$
- □ Parameter vector **w** includes all real-valued weights θ_i , complex-valued centre vectors **c**_i, and positive variances σ_i^2
- □ Like Bayesian detector, symmetric RBF network has **odd symmetry**

$$f_{\text{RBF}}(-\mathbf{x}(k);\mathbf{w}) = -f_{\text{RBF}}(\mathbf{x}(k);\mathbf{w})$$

Theory: given a block of training data $\{\mathbf{x}(k), b_1(k)\},\$

- **O** Use Parzen window estimate with Gaussian kernels to estimate probability density function of RBF network output
- **O** From this estimate PDF, obtain estimated detector's bit error rate
- ${\bf O}$ Minimise this estimated BER with respect to RBF parameters ${\bf w}$
- \Box Adopting **stochastic** or one-sample implementation leads to NLBER

$$\begin{cases} y_{\text{RBF}}(k) = f_{\text{RBF}}(\mathbf{x}(k); \mathbf{w}(k-1)) \\ \mathbf{w}(k) = \mathbf{w}(k-1) + \frac{\mu}{\sqrt{2\pi\rho}} e^{-\frac{y_{\text{RBF}}^2(k)}{2\rho^2}} \operatorname{sgn}(b_1(k)) \frac{\partial f_{\text{RBF}}(\mathbf{x}(k); \mathbf{w}(k-1))}{\partial \mathbf{w}} \end{cases}$$

where μ is step size or adaptive gain, ρ is kernel width

□ As number of users, M, in system is usually known, number of RBF units can be set to $N_c \leq N_{sb} = 2^{M-1}$

□ Using cluster-variantion **enhanced clustering** to update RBF centres

$$\mathbf{c}_i(k) = \mathbf{c}_i(k-1) + \mu_c \mathcal{M}_i(\check{\mathbf{x}}(k))(\check{\mathbf{x}}(k) - \mathbf{c}_i(k-1))$$

where $\check{\mathbf{x}}(k) = \operatorname{sgn}(b_1(k))\mathbf{x}(k)$, and μ_c is step size

 \Box Membership function $\mathcal{M}_i(\mathbf{x})$ is defined as

$$\mathcal{M}_{i}(\mathbf{x}) = \begin{cases} 1, & \text{if } \bar{v}_{i} \|\mathbf{x} - \mathbf{c}_{i}\|^{2} \leq \bar{v}_{j} \|\mathbf{x} - \mathbf{c}_{j}\|^{2}, \forall j \neq i \\ 0, & \text{otherwise} \end{cases}$$

 \Box Cluster variations \bar{v}_i are update with rule

$$\bar{v}_i(k) = \mu_v \bar{v}_i(k-1) + (1-\mu_v) \mathcal{M}_i(\check{\mathbf{x}}(k)) \|\check{\mathbf{x}}(k) - \mathbf{c}_i(k-1)\|^2$$

where μ_v is a constant slightly less than 1.0, e.g. $\mu_v = 0.995$, and initial variations $\bar{v}_i(0)$ are set to same small number

Simulation Example One

- 2-element array with half
 wavelength spacing, four
 equal-power BPSK users
- Location of users in terms of angle of arrival

user	1	2	3	4
AOA	0°	20°	-30°	-45°

- □ Symmetric RBF network has $N_c = N_{sb} = 8$ symmetric RBF units
- □ Nonlinear least bit error rate algorithm

Desired-user's bit error rate

(a) learning curve of **NLBER**-RBF detector with $N_c = 8$ averaged on 10 runs, and (b) influence of symmetric RBF model size N_c , where SNR= 7 dB

Simulation Example One

- 2-element array with half
 wavelength spacing, four
 equal-power BPSK users
- Location of users in terms of angle of arrival

user	1	2	3	4
AOA	0°	20°	-30°	-45°

- □ Symmetric RBF network has $N_c = N_{sb} = 8$ symmetric RBF units
- $\label{eq:clustering} \begin{gathered} \square & \textbf{Clustering} \text{ algorithm, all} \\ & \text{RBF variances } \sigma_i^2 = \sigma_n^2 \end{gathered}$

Desired-user's bit error rate

Clustering for Example One

(a) learning curve¹ of **clustering**-RBF detector with $N_c = 8$ averaged on 5 runs, and (b) influence of RBF **variance**, where SNR= 7 dB

¹Euclidean distance(k) is defined as sum of $\|\mathbf{c}_i(k) - \bar{\mathbf{x}}_i^{(+)}\|^2$ over $1 \le i \le N_{sb}$

ICC 2007

School of ECS, University of Southampton, UK

Simulation Example Two

- 3-element array with half
 wavelength spacing, five
 equal-power BPSK users
- Location of users in terms of angle of arrival

1	2	3	4	5
0°	10°	-17°	15°	20°

- □ Symmetric RBF network has $N_c = N_{sb} = 16$ symmetric RBF units
- □ Nonlinear least bit error rate algorithm

Desired-user's bit error rate

(a) learning curve of **NLBER**-RBF detector with $N_c = 16$ averaged on 10 runs, and (b) influence of symmetric RBF model size N_c , where SNR= 5 dB

Simulation Example Two

Learning curve of **clustering**-RBF detector with $N_c = 16$ averaged on 5 runs, where SNR= 5 dB Desired-user's bit error rate clustering-RBF detector $N_c = 16$

School of ECS, University of Southampton, UK

(a) influence of clustering-RBF model size N_c with RBF variance set to σ_n^2 , and (b) influence of RBF variance with $N_c = 16$, where SNR= 5 dB

- □ Nonlinear beamforming achieves significantly smaller system bit error rate and larger user capacity
- Optimal Bayesian beamforming solution has an inherent symmetry structure
- □ A novel symmetric radial basis function network has been proposed for nonlinear beamforming
- \Box Two adaptive algorithms for downlink senario \Im Nonlinear least bit error rate
 - \Rightarrow Cluster-variation enhanced clustering

THANK YOU.

The financial support of the EU under the auspice of the Newcom project is gratefully acknowledged

