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Abstract 

 
Sparse regression modeling is addressed using a generalized kernel model in which kernel regressor 
has its individually tuned position (center) vector and diagonal covariance matrix. An orthogonal least 
squares forward selection procedure is employed to append regressors one by one. After the 
determination of the model structure, namely the selection certain number of regressors, the model 
weight parameters are calculated from the Lagrange dual problem of the regression problem with the 
regularized linear −ε insensitive loss function. Different from the support vector regression, this stage 
of the procedure involves neither reproducing kernel Hilbert nor Mercer decomposition concepts and 
thus the difficulties associated with selecting a mapping from the input space to the feature space, 
needed in the support vector machine methods, can be avoided. Moreover, as the regressors used here 
are not restricted to be positioned at training input points and each regressor has its own diagonal 
covariance matrix, sparser representation can be obtained. Experimental results involving one toy 
example and two data sets demonstrate the effectiveness of the proposed regression modeling 
approach. 
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1. Introduction 
 
Having good generalization ability and sparse representation are two key requirements in establishing a 
learning machine. Forward selection using the orthogonal least squares (OLS) algorithm [1] is a simple 
and efficient construction method that is capable of producing parsimonious linear-in-the-weights 
nonlinear models with excellent generalization performance. Alternatively, the state-of-art sparse 
kernel modeling techniques, such as the relevant vector machine and support vector machine (SVM) 
[2,3], have been gaining popularity in data modeling applications especially SVM algorithm. 
Originated from maximum margin linear classification problem, one of the main features of the SVM 
is to use hyper-plane to do both classification and regression. In classification, the hyper-plane will be 
adjusted to obtain the maximum classification margin. In regression, the gradient of the hyper-plane 
will be kept as small as possible. In a SVM type method, the training data are mapped to a high 
dimensional space where they can be approximated by a hyper-plane. The parameter of the hyper-plane 
is obtained by minimizing the cost consisted of the linear −ε insensitive loss function and the squared 
gradient of the hyper-plane. The successfully application of the SVM is heavily depended on the 
finding of the mapping that is not easy to find unfortunately. And then reproducing kernel Hilbert space 
theory is used through Mercer theorem.  
Unlike SVM formulation, the method proposed in this paper minimizes the cost consists of linear 
−ε insensitive loss function and the squared weight of the regressors. This minimization problem 

allows the usage of the non-Mercer kernels. Specifically, the generalized kernel function can be used in 
which each kernel regressor has its own tunable center vector and diagonal covariance matrix. The 
support vectors are selected by the OLS criteria and the number of the regressors can be determined by 
using some criteria such as cross validation, but not controlled by the ε  value like in SVM. Unlike the 
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standard OLS algorithm [1], in which only the regressor selection procedure is used, here the regerssor 
parameters will be optimized as well. In fact, at each stage of the selection, the optimization is used 
with respect to the kernel center vector and diagonal covariance matrix, and the determination of these 
kernel parameters is performed using a repeated weighted boosting search algorithm [4]. After the 
selection of a parsimonious model representation, the kernel weights are then calculated from the 
Lagrange dual of the minimization problem. This proposed generalized kernel regression modelling 
approach has the potential of improving modelling capacity and producing sparser final models, 
compared with the standard SVM algorithm. The advantages of the proposed method are illustrated 
using one toy example.  
 
2. Standard kernel regression modelling 
 
The task of kernel regression modelling is to construct a kernel model from the given training data set 

, where is the ith training input vector of dimension m, is the desired output with 

single dimension for the input  and N the number of training data. The SVM method solves the 
problem by using the following strategy.  
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2.1 Support vector machine regression problem 
 
In dual space, SVM regression problem can be stated as below: 
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Where )(),(),(, jijiji xxxxkk ϕϕ== , )(xϕ is the selected mapping from the input space to a high-

dimensional (feature) space, is the regression linear function (hyperplane) in the high 
dimensional space, W is the gradient of the hyperplane, C is the regularization parameter.                                                        

bxWy T += )(ϕ

After obtaining and b, the regression model can be given by Niii ,,1,, * L=αα

bxxky
N

i
iii +−=∑

=1

* ),()(ˆ αα                                                        (3) 

One of the  most common choices of kernel function is the Gaussian function of the form: 
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The common kernel variance is not provided by the algorithm and has to be determined by other 
means, such as via cross validation.  
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2.2 The dual of the minimization problem of linear −ε insensitive loss function with squared 
regressor weights 
 
The proposed algorithm uses the system model of general OLS problem [1] defined by 
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where  are the regression functions. Mixhi ,,1),( L= Miwi ,,1, L= are the regression weights. If 

define , the following minimization problem can be established  [ T
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Define , the dual problem of equations (6),(7) can be obtained as T
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After  are obtained, W can be calculated as  *, ii αα
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2.3 Construction of sparse kernel models 
 
Different from SVM, which can give a sparse system model, normally the value W obtained from 
equation (11) is not sparse.  To obtain a sparse model, number M as well as the M kernel functions 
should be determined by some criteria before the equations (9-11) are solved. To obtain a sparse 
model, we proposed first to use the OLS algorithm [1] to select a parsimonious subset model from the 
full regression model with M items defined as G , where 

. In selecting the regressors, we will assume the bias term b=0 in the 
model and use the criteria in [1] which can be stated as  
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Where  and are the orthogonalized regressors [1] T
NyyyY ],,,[ 21 L= Mjp j ,,1, L=

Based on this error reduction criterion, a subset model can be obtained in a forward selection procedure 
[1]. At the lth  selection stage, a model term is selected from the remaining candidates as 

the  model term in the subset model, if it maximizes the error reduction criterion . The details 
of the selection algorithm are readily available in [1]-[5] and, therefore, will not be repeated here.  
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It should be stated that although two different cost functions are used in problem (9),(10) and the 
standard  OLS problem, the usage of the OLS regressor selection is reasonable. Actually, the equation 
(29) can be rewritten as 
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With the same  for all the candidate regerssors )( YY T Mjlp j ≤≤, , the selection of the regressor is 
really based on the squared correlation between the training data and the regressor.  
In the standard kernel regression modelling (both of SVM and OLS), each kernel regressor is 
positioned at a training input data point and a single common kernel variance is used for every 
regerssors. Using the OLS forward selection procedure described above, we first obtain a sparse 
representation containing kernel regressors. The corresponding kernel weights are then calculated 
using the ESVM method of section 2.2. We will referred to this approach of constructing sparse kernel 
models as the sparse extended SVM (SESVM) method. 
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3. Generalized Gaussian kernel regression model 
 



In section 2.2, the deduction of the dual problem does not assume the concept of reproducing kernel 
Hilbert space and Mercer kernel. Therefore, we are not restricted to Mercer kernel. For example, we 
will allow a kernel function to take position other than the training input data points and to have an 
individually tunable diagonal covariance matrix. This leads the generalized kernel regression 
modelling. Specifically, we consider the regressors which take the forms of generalized Gaussian 
kernels: 
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for ,whereMj ≤≤1 jµ  is the mean vector of the jth kernel and its 
diagonal covariance matrix.  
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In this section, we develop an incremental construction procedure for obtaining sparse generalized 
kernel models. We will adopt an orthogonal forward selection to append the kernels one by one. At the 

 stage of model construction, the  regressor is determined by maximizing the following error 
reduction criterion  
lth lth
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By using the method proposed in [4], a number of regressors with mean and covariance as their 
parameters can be obtained. After a certain number of kernels are selected, the dual problem will be 
solved to obtain the weight. We call this algorithm generalized sparse extended SVM (GSESVM). 
  
4 Modeling examples 
 
Two hundred points of training data were generated from the scaled sinc function corrupted by 
an observation noise shown below 
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where the equally spaced input  and ]10,10[−∈x ε denotes the Gaussian white noise process with unit 
variance. Two hundred points of noise-free data were also generated as the test data set for possible 
model validation. For the Gaussian kernel modeling, the common kernel variance was set to . 
The parameter used in the repeated weighted boosting search algorithm for the generalized Gaussian 
kernel modeling were chosen to be 

12 =σ

17=SP and 20=RM . 
Experimental comparison is used to show the advantage of the proposed algorithm over SVM. First, we 
randomly select 5.0=ε and obtain the modelling performance by using mean squares error (MSE) as 
the function of the regularization parameter C and the results are depicted in Fig.1. It can be seen that 
when C=0.6, the MSE of SVM for the testing set reaches its minimum and we use this C in the 
following experiments. In practice, however, the noise-free testing set was unavailable. But to show the 
advantage of the proposed method, we give some bias to SVM by using this C. When fixed C=0.6, and 
change the value of ε , the relationships between MSE and the ε  can be obtained, which is shown in 
Fig.2. When 6.0=ε , the test MSE of SVM reaches its minimum. Then 6.0=ε  and C=0.6 are used 
and the system models for SVM and ESVM can be obtained, which are depicted in Fig.3 and Fig.4 
alternatively. The MSE of SVM for the training set is 0.9405, for the noise-free test set is 0.0508; they 
are 0.8907 and 0.0556 for ESVM relatively. It should be pointed out that the system model given by 
ESVM is not sparse. For the two sparse methods, the selected first 16 support vectors for SESVM and 
GSESVM are listed in Table 1 and 2 separately and Fig.5 shows modelling performance as function of 
the selected subset model size. From Fig.5, it appears that when the numbers of the support vectors 
(SVs) equal to 7 and 13 for the standard Gaussian kernel model (SESVM), the training set MSE have a 
significantly reduction and after words there are long flat periods. For the general Gaussian kernel 
model (GSESVM), this item values are 5-terms and 13-terms alternatively. If we use SVs=7 and 13 for 
SESVM and SVs=5 and 13 for GSESVM to establish system models and evaluate the modelling 
performance as the function of ε , the results shown in Fig.6 can be obtained. To make comparison 
easy, 13-items models for both SESVM and GSESVM are constructed by set C=0.6. By changing ε  
value to obtain different MSE for SVM, SESVM and GSESVM, the obtained results can be 
summarised in Table 3. It is obvious that both the SESVM and the GSESVM methods can give more 
sparse models than SVM when similar MSE is required, especially in the situation when ε  is small. 
The two sample sparse models with 13 terms constructed by the SESVM and GSESVM are shown in 



Fig. 7 and 8, respectively. The MSE for SESVM are 0.9393 for the training set and 0.0319 for the 
noise-free test set, and 0.9325 and 0.0298 for GSESVM respectively. Because the support vectors of 
GSESVM does not belong to the training set, the weight of the relative regressors are used as the y 
value to depict the picture.  
 
5 Conclusion 
 
The contributions of this paper are threefold. Firstly, we have considered an alternative SVM 
formulation, referred to as the ESVM, which does not assume the reproducing kernel Hilbert space and 
can be applied to non-Mercer kernels. Secondly, a sparse kernel model construction algorithm, called 
the SESVM, has been proposed. In this approach a parsimonious representation is selected using the 
standard OLS forward selection procedure and the corresponding model weights are then computed 
using the ESVM formulation. Thirdly, which is a major contribution of our work, the generalized 
kernel modeling has been derived where each kernel regressor has its tunable center vector and 
diagonal covariance matrix. An orthogonal forward selection procedure has been proposed to 
incrementally construct a sparse generalized kernel model representation. At each model construction 
stage, a kernel regressor is optimized using a guided random search optimization algorithm. Again the 
corresponding model weights are then calculated using the ESVM formulation. Our modeling 
experimental results have clearly demonstrated the advantage of this proposed novel modeling 
technique to produce very sparse models that generalize well. 
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Figure 1: Influence of the regularization parameter C to the performance of the SVM and ESVM for 

the toy example: (a) over the noise training set, and (b) over the noise-free test set. The kernel variance 
, the error band parameter12 =σ 5.0=ε . 

 

 
Figure 2: Influence of the error band parameter ε  to the performance of the SVM and ESVM for the 
toy example: (a) over the noise training set, and (b) over the noise-free test set. The kernel variance 

 and the regularization parameter C=0.6. 12 =σ
 
 



 
 

Figure 3: The experiment result of SVM for the toy example. Both the dots and circles are noisy 
training data. While the circles are support vectors, the dots are not. The dot curve denotes the sinc 

function and the solid curve indicates the kernel model. The regularization parameter C=0.6, the kernel 
variance  and 12 =σ 6.0=ε   

 
 
 
 
 
 
 
 
 
 

 
Figure 4: The experiment result of ESVM for the toy example. The circles are both training data and  

support vectors. The dot curve denotes the sinc function and the solid curve indicates the kernel model. 
The regularization parameter C=0.6, the kernel variance  and 12 =σ 6.0=ε   

 
 



 
 

Figure 5: Modeling performance over the noisy training set (a) and the noise-free test set (b) as 
function of the selected model size. For the SESVM, standard Gaussian kernel model is used with 

while for the GSESVM, generalized Gaussian kernel model with tunable means and variances is 
used. The error band parameter

12 =σ
6.0=ε , the regularization parameter C=0.6. 
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Figure 6: Influence of the error band parameter ε  to the performance of the SESVM and GSESVM for 
the toy example: (a) over the noise training set, and (b) over the noise-free test set. The regularization 

parameter C=0.6. Standard Gaussian kernel variance . 12 =σ
 



 
Figure 7: The experiment result of SESVM for the toy example. Both the dots and circles are noisy 
training data. While the circles are support vectors, the dots are not. The dot curve denotes the sinc 

function and the solid curve indicates the kernel model. The regularization parameter C=0.6, the kernel 
variance  and 12 =σ 1.0=ε   

 
 
 

 
Figure 8: The experiment result of GSESVM for the toy example. The dots are noisy training data, the 
circles are added support vectors while the y value is the weight of this SV. The dot curve denotes the 
sinc function and the solid curve indicates the kernel model. The regularization parameter C=0.6, and 

1.0=ε   
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