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many studies have addressed the problem of �nding \optimal" realizations of �nite-preisionontroller strutures based on various FWL stability measures [1℄-[7℄. Exept [5℄, these designmethods usually yield fully parameterized ontroller strutures, that is, they generally do notprodue sparse ontroller realizations.It is highly desirable that a ontroller realization has a sparse struture, ontaining manytrivial elements of 0, 1 or -1. This is partiularly important for real-time appliations withhigh-order ontrollers, as it will ahieve better omputational eÆieny. It is known that anon-ial ontroller realizations have sparse strutures but may not have the required FWL stabilityrobustness. This poses a omplex problem of �nding sparse ontroller realizations with goodFWL losed-loop stability harateristis. In [8℄, sparseness onsideration is imposed as on-straints in optimizing a FWL stability measure using an adaptive simulated annealing (ASA)algorithm. This approah is diÆult to extend to high-order ontrollers due to high omputa-tional requirements. In our previous works [9℄,[10℄, a design proedure has been given to obtainsparse ontroller realizations based on a FWL pole-sensitivity stability related measure.In this study we derive a new improved FWL losed-loop stability related measure, whihtakes into aount the number of trivial elements in a ontroller realization. The true optimalrealization that maximizes this measure will possess an optimal trade-o� between robustness toFWL errors and sparse struture. However, it is not known how to obtain suh an optimal real-ization. We extend an iterative algorithm [2℄,[11℄ to searh for a suboptimal solution. Spei�ally,we �rst obtain the realization that maximizes a lower bound of the proposed stability measure.This an easily be done [5℄,[7℄ but the resulting realization is not sparse. A stepwise algorithmis then applied to make the realization sparse without sari�ing FWL stability robustness toomuh. The proposed method has some advantages over the existing methods [5℄,[9℄,[10℄: it isless onservative in estimating the robustness of the FWL losed-loop stability and the ompu-tational omplexity is onsiderably redued. Numerial examples are used to test this designproedure and to ompare its performane with the previous method [9℄,[10℄.2 A stability related measure with sparseness onsiderationsConsider the disrete-time losed-loop ontrol system, onsisting of a linear time-invariant plantP (z) and a digital ontroller C(z). The plant model P (z) is assumed to be stritly proper witha state-spae desription (AP ;BP ;CP ), where AP 2 Rm�m, BP 2 Rm�l and CP 2 Rq�m.2



Let (AC ;BC ;CC ;DC) be a state-spae desription of the ontroller C(z), with AC 2 Rn�n,BC 2 Rn�q, CC 2 Rl�n and DC 2 Rl�q. A linear system with a given transfer funtion matrixhas an in�nite number of state-spae desriptions. In fat, if (A0C ;B0C ;C0C ;D0C) is a state-spaedesription of C(z), all the state-spae desriptions of C(z) form a realization setSC 4= n(AC ;BC ;CC ;DC)jAC = T�1A0CT;BC = T�1B0C ;CC = C0CT;DC = D0Co (1)where T 2 Rn�n is any non-singular matrix. Denote N 4= (l + n)(q + n) andX 4= " DC CCBC AC # = 266664 x1 xl+n+1 � � � xN�l�n+1x2 xl+n+2 � � � xN�l�n+2... ... � � � ...xl+n x2l+2n � � � xN 377775 (2)The stability of the losed-loop ontrol system depends on the eigenvalues of the losed-loopsystem matrix A(X) = " AP +BPDCCP BPCCBCCP AC #= " AP 00 0 #+ " BP 00 In #X " CP 00 In # 4=M0 +M1XM2 (3)where 0 denotes the zero matrix of appropriate dimension and In the n � n identity matrix.All the di�erent realizations X in SC have exatly the same set of losed-loop poles if theyare implemented with in�nite preision. Sine the losed-loop system has been designed to bestable, all the eigenvalues �i(A(X)), 1 � i � m+ n, are within the unit disk.When a X is implemented with a �xed-point proessor, it is perturbed to X +�X due tothe FWL e�et. Eah element of �X is bounded by �"=2, that is,�(�X) 4= maxj2f1;���;Ng j�xjj � "=2 (4)For a �xed-point proessor of Bs bits, let Bs = Bi+Bf , where 2Bi is a \normalization" fator tomake the absolute value of eah element of 2�BiX no larger than 1. Thus, Bi are bits requiredfor the integer part of a number and Bf are bits used to implement the frational part of anumber. It an easily be seen that " = 2�Bf . With the perturbation �X, �i(A(X)) is moved to�i(A(X+�X)). If an eigenvalue of A(X+�X) is outside the open unit disk, the losed-loopsystem, designed to be stable, beomes unstable with Bs-bit implemented X. It is thereforeritial to hoose a realization X that has a good losed-loop stability robustness to the FWLerror. Another important onsideration is the sparseness of X. Those elements of X, whihhave values 0, 1 and -1, are alled trivial parameters. A trivial parameter requires no operations3



in the �xed-point implementation and does not ause any omputational error at all. Thus�xj = 0 when xj = 0; 1 or �1. In order to take into aount this property of trivial ontrollerparameters, we de�ne an indiator funtion asÆ(x) = � 0; if x = 0; 1 or � 11; otherwise (5)We emphasize that in this paper a trivial element is referred to as 0, 1 or �1. A naturalextension ould also onsider \semi-trivial" elements of X, whih are a power of two, x = 2�i,suh as x = 0:5, 0:25 and so on. These elements an be realized with simple shift operationsin the �xed-point implementation. The design of suh kind of sparse ontroller realizations arehowever muh more diÆult (see for example [12℄).We are now ready to propose a new FWL losed-loop stability related measure whih takesinto aount the sparseness of a ontroller realization. When the FWL error �X is small,� j�ij 4= ����i(A(X+�X))���� ����i(A(X))��� � NXj=1 � j�ij�xj �xjÆ(xj); 8i 2 f1; � � � ;m+ ng (6)where �j�ij�xj is evaluated at X. It follows from the Cauhy inequality thatj�j�ijj �vuuutNs NXj=1 ������ j�ij�xj �����2 j�xjj2 Æ(xj) � �(�X)vuuutNs NXj=1 ������ j�ij�xj �����2 Æ(xj); 8i (7)where Ns is the number of the nontrivial elements in X. This leads to the following FWLlosed-loop stability related measure�1(X) = mini2f1;���;m+ng 1� ����i(A(X))���sNs NPj=1 Æ(xj) ����j�ij�xj ���2 (8)The rationale of this measure is obvious. If the norm of the FWL error �X is smaller than�1(X), i.e. �(�X) < �1(X), it follows from (7) and (8) that j�j�ijj < 1� ����i(A(X))���. Therefore����i(A(X+�X))��� � j�j�ijj+ ����i(A(X))��� < 1 (9)whih means that the losed-loop system remains stable under the FWL error �X. In otherwords, for a given ontroller realization X, the losed-loop system an tolerate those FWLperturbations �X whose norms, as de�ned in (4), are less than �1(X). The larger �1(X) is,the larger FWL errors the losed-loop system an tolerate. Hene, �1(X) is a stability relatedmeasure desribing the FWL losed-loop stability performane of a ontroller realization X.This measure learly onsiders the number of trivial parameters in a ontroller realization. Wean now disuss how to ompute �1(X). First we have the following lemma from [5℄,[7℄.4



Lemma 1 Let A(X) = M0 +M1XM2 given in (3) be diagonalisable, and have eigenvaluesf�ig = f�i(A(X))g. Denote pi a right eigenvetor of A(X) orresponding to the eigenvalue�i. De�ne Mp 4= h p1 p2 � � � pm+n i and My 4= h y1 y2 � � � ym+n i =M�Hp , where H is thetranspose and onjugate operator and yi the reiproal left eigenvetor related to �i. Then��i�X = 2664 ��i�x1 � � � ��i�xN�l�n+1... � � � ...��i�xl+n � � � ��i�xN 3775 =MT1 y�i pTi MT2 (10)where the supersript � denotes the onjugate operation and T the transpose operator.Next, we have the following resultLemma 2 For X, A(X) and f�ig as de�ned in lemma 1,�j�ij�X = 1j�ijRe ���i ��i�X� (11)where Re[�℄ denotes the real part.Proof: Noting j�ij = p��i�i leads to�j�ij�X = 12p��i �i ����i�X �i + ��i ��i�X� = 12j�ij ����i�X�� �i + ��i ��i�X� = 1j�ijRe ���i ��i�X� (12)Combining lemma 1 with lemma 2 results in the following proposition, whih shows that,given a X, the value of �1(X) an easily be alulated.Proposition 1 For X, M1, M2, A(X), f�ig, pi and yi as de�ned in lemma 1,�j�ij�X = 26664 �j�ij�x1 � � � �j�ij�xN�l�n+1... � � � ...�j�ij�xl+n � � � �j�ij�xN 37775 = 1j�ijMT1Re h��iy�i pTi iMT2 (13)It should be emphasized that the FWL stability related measure (8) is di�erent with the oneused in [5℄,[9℄,[10℄, whih is given by�2(X) = mini2f1;���;m+ng 1� ����i(A(X))���sNs NPj=1 Æ(xj) ��� ��i�xj ���2 (14)The key di�erene between �1(X) and �2(X) is that the former onsiders the sensitivity ofj�i(A(X))j while the latter onsiders the sensitivity of �i(A(X)). It is well-known that the5



stability of a linear disrete-time system depends only on the moduli of its eigenvalues. As �2(X)inludes the unneessary eigenvalue arguments in onsideration, it is generally onservative inomparison with �1(X). This an be veri�ed stritly. From lemma 2,������� ����i(A(X))����xj ������ � ������i (A(X))��i(A(X))�xj ��������i(A(X))��� = �������i(A(X))�xj ����� (15)whih means that �2(X) � �1(X). The result given in [7℄ has on�rmed that by onsidering thesensitivity of eigenvalue moduli rather than the sensitivity of eigenvalues, a better FWL losed-loop stability related measure an be obtained. It is worth pointing out that the proposedmeasure �1(X) also has onsiderable omputational advantages over the existing �2(X). Thisis beause �j�ij�X is real-valued while ��i�X is omplex-valued. Thus the optimisation proess andsparse transformation proedure, disussed in the next setion, require muh less omputationthan the previous approah [5℄,[9℄,[10℄, unless all the system eigenvalues are real-valued in whihase �1(X) and �2(X) beome idential.3 Suboptimal ontroller realizations with sparse struturesThe optimal sparse ontroller realization with a maximum tolerane to FWL perturbation inpriniple is the solution of the following optimization problem:� 4= maxX2SC �1(X) (16)However, it is diÆult to solve for the above optimization problem beause �1(X) inludes Æ(xj)and is not a ontinuous funtion with respet to ontroller parameters xj . To get around thisdiÆulty, we onsider a lower bound of �1(X) de�ned by�1(X) = mini2f1;���;m+ng 1� ����i(A(X))���sN NPj=1 ����j�ij�xj ���2 (17)Obviously, �1(X) � �1(X) and �1(X) is a ontinuous funtion of ontroller parameters. It isrelatively easy to optimize �1(X) (e.g. [7℄). Let the \optimal" ontroller realization Xopt be thesolution of the optimization problem ! 4= maxX2SC �1(X) (18)Notie that Xopt is generally not the optimal solution of (16) and does not have a sparsestruture. However, it an readily be attempted by the following optimization proedure.6



3.1 Optimization of the lower-bound measureAssume that an initial ontroller realization has been obtained by some design proedure and isdenoted as X0. Aording to (1){(3), a similarity transformation of X0 by T isX = X(T) = " Il 00 T�1 #X0 " Iq 00 T # (19)where det(T) 6= 0. The losed-loop system matrix for the realization X isA(X) = " Im 00 T�1 #A(X0) " Im 00 T # (20)Obviously,A(X) has the same set of eigenvalues asA(X0), denoted as f�0i g. From (20), applyingproposition 1 results in �j�ij�X ����X(T) = " Il 00 TT # �j�ij�X ����X0 " Iq 00 T�T # (21)For a omplex-valued matrix M 2 C(l+n)�(q+n) with elements msk, denote the Frobenius normkMkF 4=vuutl+nXs=1 q+nXk=1m�skmsk (22)Then the lower-bound measure (17) an be rewritten as�1(X) = mini2f1;���;m+ng 1� ���0i ��pN " Il 00 TT # �j�ij�X ���X0 " Iq 00 T�T #F= mini2f1;���;m+ng 1pN " Il 00 TT #�i " Iq 00 T�T #F (23)where �i 4= �j�ij�X ���X01� ���0i �� (24)are �xed matries that are independent of T. Thus, if we introdue the ost funtionf(T) = mini2f1;���;m+ng 1pN " Il 00 TT #�i " Iq 00 T�T #F = �1(X) (25)the optimal similarity transformation Topt an be obtained by solving for the following unon-strained optimization problem ! = maxT2Rn�n f(T) (26)with a measure of monitoring the singular values of T to make sure that det(T) 6= 0 [13℄. Theunonstrained optimization problem (26) an be solved, for example, using the simplex searh7



algorithm [14℄, the simulated annealing algorithm [15℄, the ASA algorithm [16℄ or the genetialgorithm [17℄. In our previous study, we have found that the ASA is very eÆient in solving forthis kind of optimization problems [7℄. With Topt, the orresponding optimal realization Xoptthat is the solution of (18) an readily be omputed.3.2 Stepwise transformation algorithm for sparse realizationsAs the optimal sparse realization that maximizes �1 is diÆult if not impossible to obtain, wewill searh for a suboptimal solution of (16). More preisely, we will searh for a realization thatis sparse with a large enough value of �1. Sine Xopt maximizes �1 and �1 is a lower-boundof �1, Xopt will produe a satisfatory large value of �1, although it usually ontains no trivialelements. We an make Xopt sparse by hanging one nontrivial element of Xopt into a trivialone at a step, under the onstraint that the value of �1 does not redue too muh. This proesswill produe a sparse realization Xspa with a satisfatory value of �1. Clearly suh a Xspa is nota true optimal solution of (16). Notie that, even though �1(Xspa) � �1(Xopt), it is possiblethat �1(Xspa) � �1(Xopt). In other words, Xspa may atually ahieve better FWL stabilityperformane than Xopt. The design proedure is similar to the one used in [9℄,[10℄. We nowdesribe the detailed stepwise proedure for obtaining Xspa.Step 1: Set � to a very small positive real number (e.g. 10�5). The transformation matrixT 2 Rn�n is initially set to Topt so that X(T) = Xopt.Step 2: Find out all the trivial elements f�1; � � � ; �rg in X(T) (a parameter is onsidered to betrivial if its distane to 0, 1 or -1 is less than a tolerane value, say 10�8). Denote � thenontrivial element in X(T) that is the nearest to 0, 1 or -1.Step 3: Choose S 2 Rn�n suh thati) �1(X(T+ �S)) is lose to �1(X(T)).ii) f�1; � � � ; �rg in X(T) remain unhanged in X(T+ �S).iii) � in X(T) is hanged as nearer as possible to 0, 1 or -1 in X(T+ �S).iv) kSkF = 1.If S does not exist, Tspa = T and terminate the algorithm.Step 4: T = T+ �S. If � in X(T) is nontrivial, go to step 3. If � beomes trivial, go to step 2.8



The key of the above algorithm is Step 3 whih guarantees that X(Tspa) has good performaneas measured by �1 and ontains many trivial parameters. We now disuss how to obtain S.Denote Ve(�) the olumn staking operator. With a very small � , ondition i) means that�Ve�d�1dT ��T Ve (S) = 0 (27)and ondition ii) means that 8>>>><>>>>: �Ve �d�1dT ��T Ve (S) = 0...�Ve �d�rdT ��T Ve (S) = 0 (28)Denote the matrix E 4= 266666664 �Ve �d�1dT ��T�Ve �d�1dT ��T...�Ve �d�rdT ��T
377777775 2 R(r+1)�n2 (29)Ve(S) must belong to the null spae N (E) of E. If N (E) is empty, Ve(S) does not exist andthe algorithm is terminated. If N (E) is not empty, it must have basis fb1; � � � ;btg, assumingthat the dimension of N (E) is t. Condition iii) requires moving � to its desired value (0, 1 or-1) as fast as possible, and we should hoose Ve(S) as the orthogonal projetion of Ve � d�dT�onto N (E). Noting ondition iv), we an ompute Ve(S) as follows:ai = bTi Ve� d�dT� 2 R; 8i 2 f1; � � � ; tg (30)v = tXi=1 aibi 2 Rn2 (31)Ve(S) = � vpvTv 2 Rn2 (32)The sign in (32) is hosen in the following way. If � is larger than its nearest desired value, theminus sign is taken; otherwise, the plus sign is used.In the above algorithm, the derivatives d�1dT , d�dT , d�1dT ; � � � ; d�rdT are needed. For alulatingthese required derivatives, the following well-known fat is useful. Given any element yij in anonsingular Y 2 Rn�n with i 2 f1; � � � ; ng and j 2 f1; � � � ; ng,�Y�yij = eieTj and �Y�1�yij = �Y�1eieTj Y�1 (33)where ei denotes the ith oordinate vetor. In (19), de�neU1 = � Il 00 T � and U2 = � Iq 00 T � (34)9



For any element xks in X = U�11 X0U2, where k 2 f1; � � � ; l + ng and s 2 f1; � � � ; q + ng, andany tij in T, where i 2 f1; � � � ; ng and j 2 f1; � � � ; ng,�xks�tij = eTk �U�11�tij X0U2es + eTkU�11 X0�U2�tij es= �eTkU�11 el+ieTl+jU�11 X0U2es + eTkU�11 X0eq+ieTq+jes= �eTkU�11 el+ieTl+jXes + eTkU�11 X0eq+ieTq+jes (35)That is, dxksdT = 264 eTkU�11 . . . eTkU�11 3750B�264X0eq+1eTq+1 � � � X0eq+1eTq+n... � � � ...X0eq+neTq+1 � � � X0eq+neTq+n 375�264 el+1eTl+1X � � � el+1eTl+nX... � � � ...el+neTl+1X � � � el+neTl+nX3751CA264 es . . . es 375 (36)Thus, we an readily alulate d�dT , d�1dT ; � � � ; d�rdT . Next, de�nei0 = arg mini2f1;���;m+ng 1pN � Il 00 TT ��i � Iq 00 T�T �F (37)Similar to the derivation of dxksdT , for any element wks inW = UT1�i0U�T2 , where k 2 f1; � � � ; l+ng and s 2 f1; � � � ; q + ng, we havedwksdT = 264 eTk . . . eTk 3750B�264 el+1eTl+1�i0 � � � el+neTl+1�i0... � � � ...el+1eTl+n�i0 � � � el+neTl+n�i0 375�264Weq+1eTq+1 � � � Weq+neTq+1... � � � ...Weq+1eTq+n � � � Weq+neTq+n 3751CA264U�T2 es . . . U�T2 es 375 (38)Sine �1 = 1pNqPl+nk=1Pq+ns=1 w�kswks (39)We an alulate d�1dT = � 1pN kWk3F Re "l+nXk=1 q+nXs=1w�ksdwksdT # (40)Before presenting some simulation results, we point out that given a FWL pole-sensitivitymeasure, suh as �1(X), an estimated minimum bit length for guaranteeing losed-loop stabilityan be estimated using [6℄,[7℄B̂s;min = Bi + Int[� log2(�1(X))℄ � 1 (41)where the integer Int[x℄ � x. 10



4 Numerial examplesWe present two design examples to show how our approah an be used eÆiently to searh forsparse ontroller realizations with satisfatory FWL losed-loop stability performane.Example 1. This was a single-input single-output uid power speed ontrol system studied in[18℄,[19℄. The plant model was in the ontinuous-time form and a ontinuous-time H1 optimalontroller was designed in [18℄. In this study, we obtained a disrete-time plant P (z) and adisrete-time ontroller C(z) by sampling the ontinuous-time plant and H1 ontroller using asampling rate of 2 kHz. The disrete-time plant P (z) was given byAP = 26664 9:9988e � 01 1:9432e � 05 5:9320e � 05 �6:2286e � 05�4:9631e � 07 2:3577e � 02 2:3709e � 05 2:3672e � 05�1:5151e � 03 2:3709e � 02 2:3751e � 05 2:3898e � 051:5908e � 03 2:3672e � 02 2:3898e � 05 2:3667e � 05 37775 ;BP = 26664 3:0504e � 03�1:2373e � 02�1:2375e � 02�8:8703e � 02 37775 ; CP = h 1 0 0 0 iThe initial realization of the ontroller C(z) given in a ontrollable anonial form wasX0 = 2666664 �8:0843e � 04 �1:6112e � 03 �1:5998e � 03 �1:5885e � 03 �1:5773e � 031 0 0 0 �3:3071e � 010 1 0 0 1:9869e + 000 0 1 0 �3:9816e + 000 0 0 1 3:3255e + 00
3777775Notie that the ontrollable anonial form was very sparse, ontaining only 9 non-trivial el-ements. The losed-loop transition matrix A(X0) was then formed using (3), from whih theeigenvalues and the orresponding eigenvetors of the ideal (in�nite-preision) losed-loop systemwere omputed. The losed-loop eigenvalues were:2666666666664

�1�2�3�4�5�6�7�8
3777777777775 =

2666666666664
9:9956e � 01 + j 2:5674e � 049:9956e � 01 � j 2:5674e � 049:9955e � 019:9333e � 013:3333e � 012:3625e � 022:7819e � 19�3:8735e � 09

3777777777775The optimisation problem (26) was onstruted, and the ASA algorithm [16℄ obtained the fol-lowing solutionTopt = 26664 2:3644e + 07 2:0268e + 06 1:0498e + 08 �4:7194e + 06�1:1839e + 08 �9:9623e + 06 �5:2570e + 08 2:3636e + 071:6622e + 08 1:3872e + 07 7:3801e + 08 �3:3191e + 07�7:1475e + 07 �5:9364e + 06 �3:1729e + 08 1:4274e + 07 3777511



The orresponding ontroller realization, whih maximises the lower-bound measure �1, wasXopt = 2666664 �8:0843e � 04 6:4378e � 02 �1:1974e � 02 �1:1493e � 02 �2:2104e � 012:7588e � 03 1:0010e + 00 �1:4054e � 02 1:0924e � 03 �8:9552e � 03�2:2776e � 04 �5:8175e � 02 3:3649e � 01 7:5457e � 02 1:3962e � 03�2:5200e � 04 1:0668e � 03 1:6778e � 02 9:9766e � 01 1:5423e � 038:1179e � 03 5:1520e � 03 3:1311e � 02 �3:8681e � 03 9:9031e � 01
3777775The stepwise transformation algorithm was then applied to make Xopt sparse, whih yielded thefollowing similarity transformation matrix and orresponding ontroller realizationTspa = 26664 �1:7499e + 05 �4:5848e + 05 2:1159e + 08 3:0140e + 028:1616e + 05 1:8611e + 06 �1:0592e + 09 �1:2931e + 03�1:0789e + 06 �2:3503e + 06 1:4869e + 09 1:8162e + 034:3753e + 05 9:4770e + 05 �6:3921e + 08 �7:8105e + 02 37775Xspa = 2666664 �8:0843e � 04 1:6372e � 02 �5:4228e � 04 �1:8348e � 03 �6:9866e � 020 1 0 0 �1:4073e � 030 �6:8678e � 02 3:3285e � 01 4:2230e � 01 5:8895e � 040 �5:6623e � 06 �7:6002e � 04 1 02:3061e � 02 �8:1961e � 06 0 4:5476e � 05 9:9262e � 01
3777775As the ontroller order is not large for this example, the omputational e�ort in solving theoptimisation problem (26) is relatively low. In a typial workstation network, Xopt was obtainedwithin a few minutes. The omplexity of the sparse proedure obviously depends on how sparseone wants to fore a realization to be. Typially a few hundreds of iterations are suÆient. Forthis example, Xspa was obtained from Xopt within a few minutes.Table 1 ompares the FWL losed-loop stability performane and the number of non-trivialelements for the three ontroller realizations X0, Xopt and Xspa, respetively. For a omparisonpurpose, the values of the previous stability related measure �2 and its lower-bound �2 togetherwith their orresponding estimated minimum bit lengths [9℄,[10℄ are also given in Table 1 for thethree realizations. We also exploited the true minimum bit length that guaranteed losed-loopstability for a ontroller realization X using the following omputer simulation. Starting with alarge enough bit length, e.g. Bs = 100, we rounded the ontroller X to Bs bits and heked thestability of the losed-loop system, i.e. observing whether the losed-loop poles were within theopen unit disk. Redued Bs by 1 and repeated the proess until there appeared to be losed-loopinstability at Bu bits. Then Bs;min = Bu +1. The values of Bs;min for the three realizations aregiven in Table 1. Notie that for Bs � Bs;min, the Bs-bit implemented ontroller will alwaysguarantee losed-loop stability. However, there may exist some Bs < Bu, whih regains losed-loop stability. For example, for the initial realization X0, Bu = 32, i.e. when the bit length issmaller than 33, the losed-loop beomes unstable. At Bs = 16 or 15, the losed-loop beomesstable again. With Bs < 15 instability is observed again.12



For this example, the anonial realization X0 is the most sparse with only 9 non-trivial pa-rameters, but its FWL losed-loop stability related measure �1(X0) is very poor. The realizationXopt has a muh better FWL stability robustness as indiated by �1(Xopt), but its all 25 ele-ments are non-trivial. The realization Xspa has the largest �1(Xspa) and, moreover, it is sparsewith only 16 non-trivial parameters. This example only has a pair of omplex eigenvalues. Evenso, the results shown in Table 1 indiate that the proposed �1 (�1 respetively) is less onserva-tive in estimating the robustness of FWL losed-loop stability than the previous measure �2 (�2respetively)1. We also omputed the unit impulse response of the losed-loop ontrol systemwhen the ontrollers were the in�nite-preision implemented X0 and 16-bit implemented threedi�erent ontroller realizations. Notie that any realization X 2 SC implemented in in�nitepreision will ahieve the exat performane of the in�nite-preision implemented X0, whih isthe designed ontroller performane. For this reason, the the in�nite-preision implemented X0is referred to as the ideal ontroller realization Xideal. Fig. 1 ompares the unit impulse responseof the plant output y(k) for the ideal ontroller Xideal with those of the 16-bit implemented X0,Xopt and Xspa. It an be seen that the performane of the 16-bit implemented Xspa is almostidential to that of the 16-bit implemented Xopt, whih is very lose to the ideal performane.Example 2. This was a dual wrist assembly whih was a prototype teleroboti system usedin miro-surgery experiments [20℄. This dual wrist assembly is a two-input (l = 2) two-output(q = 2) system with a plant order m = 4, and the digital ontroller designed using H1 methodhad an order of n = 10 [20℄. The total number of ontroller parameters was N = 144. TheH1 ontroller designed in [20℄, whih was fully parameterised with Ns = N , was used asthe initial ontroller realization X0, and the realization Xopt that maximized the lower-boundmeasure �1 was obtained using the ASA algorithm. This realization was then made sparse usingthe algorithm given in subsetion 3.2 to yield Xspa. As the ontroller was a high-order one, theomputational ost was muh higher, ompared with the previous example, and the entire designproess was ompleted in 50 minutes in a typial workstation network. Table 2 summarizes theperformane of these three di�erent ontroller realizations. It an be seen that the proposedmeasure �1 (�1 respetively) yielded less onservative results in estimating the robustness ofFWL losed-loop stability than the previous measure �2 (�2 respetively).Fig. 2 ompares the �rst-input to �rst-output unit impulse response of the losed-loop system1If arg �1 = arg �2 = i0 (arg �1 = arg �2 respetively) and �i0 is real valued, then obviously �1 = �2 (�1 = �2respetively). 13



obtained using the ideal ontroller Xideal with those obtained using the 20-bit implementedontroller realizations Xopt and Xspa. The 20-bit implemented X0 is unstable and therefore isnot shown. It an be seen that the performane of the 20-bit implemented Xopt is lose to theideal performane, and the 20-bit implemented Xspa, although deviating from the ideal one,ahieves a stable losed-loop performane. Fig. 3 ompares the seond-input to seond-outputideal unit impulse response of the losed-loop system with those of the 24-bit implementedX0, Xopt and Xspa. It an be seen that the performane of the 24-bit implemented Xspalosely mathes that of the 24-bit implemented Xopt, whih itself is almost idential to the idealperformane. Deviation from the ideal performane by the 24-bit implemented X0 an learlybe seen from Fig. 3. This example learly demonstrates the e�etiveness of the proposed designproedure. The sparse ontroller realization Xspa obtained has almost half of its parametersbeing trivial, and it has a muh improved FWL losed-loop stability robustness over the initialontroller realization X0.5 ConlusionsWe have studied FWL implementation of digital ontroller strutures with sparseness onsid-eration. A new FWL losed-loop stability related measure has been derived, whih takes intoaount the number of trivial parameters in a ontroller realization. It has been shown that thisnew measure yields a more aurate estimate for the robustness of FWL losed-loop stability. Apratial proedure has been presented to obtain sparse ontroller realizations with satisfatoryFWL losed-loop stability harateristis. Two examples demonstrate that the proposed designproedure yields omputationally eÆient ontroller strutures suitable for FWL implementationin real-time appliations.AknowledgementsJ. Wu and S. Chen wish to thank the support of the U.K. Royal Soiety under a KC Wongfellowship (RL/ART/CN/XFI/KCW/11949).
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realization X0 Xopt XspaNs 9 25 16�1 2.604531e-12 6.862889e-05 6.108122e-05B̂s;min based on �1 40 14 14�1 4.417941e-12 6.862889e-05 1.348887e-04B̂s;min based on �1 39 14 13�2 2.604531e-12 5.500982e-05 6.108052e-05B̂s;min based on �2 40 15 14�2 4.417941e-12 5.500982e-05 1.348839e-04B̂s;min based on �2 39 15 13Bs;min 33 11 11Table 1: Performane omparison of the three di�erent ontroller realizations for Example 1.
realization X0 Xopt XspaNs 144 144 75�1 4.306085e-04 3.224443e-03 1.279414e-03B̂s;min based on �1 27 24 25�1 4.306085e-04 3.224443e-03 2.331625e-03B̂s;min based on �1 27 24 24�2 1.173382e-04 1.057405e-03 4.393420e-04B̂s;min based on �2 29 25 27�2 1.173382e-04 1.057405e-03 9.249032e-04B̂s;min based on �2 29 25 26Bs;min 22 20 20Table 2: Performane omparison of the three di�erent ontroller realizations for Example 2.
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Figure 1: Comparison of unit impulse response of the in�nite-preision ontroller implementationXideal with those of the three 16-bit implemented ontroller realizations X0, Xopt and Xspa forExample 1.
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Figure 2: Comparison of �rst-input �rst-output unit impulse response of the in�nite-preisionontroller implementation Xideal with those of the 20-bit implemented ontroller realizationsXopt and Xspa for Example 2. The 20-bit implemented X0 is unstable and hene is not shownhere.
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Figure 3: Comparison of seond-input seond-output unit impulse response of the in�nite-preision ontroller implementation Xideal with those of the 24-bit implemented ontroller real-izations X0, Xopt and Xspa for Example 2.
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