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on the ontroller parameters may ause the losed-loop system to go unstable.The FWL e�et on the losed-loop stability dependson the ontroller realization struture. This propertyan be utilized to \selet" ontroller realization in or-der to improve the \robustness" of losed-loop stabil-ity under ontroller perturbations. Several metris,suh as the LQG measure [4℄, the stability radius andH1 based measure [5℄, and the pole-sensitivity mea-sure based on an l2-norm [6℄, have been proposed toquantify the FWL e�et on losed-loop stability. Theapproah of [6℄ is attrative beause the design pro-edure for searhing for optimal FWL ontroller real-izations that maximize the proposed measure was de-veloped. Reently, another tratable measure basedon an l1-norm [7℄ has been proposed, whih providesa less onservative estimate of the FWL losed-loopstability robustness than the measure of [6℄.The ontribution of this paper is two fold. Unlikethe most existing works whih only onsider output-feedbak ontroller struture, we onsider a generalontroller struture that inludes output-feedbakand observer-based ontrollers. We derive a newtratable stability measure for the uni�ed ontrollerstruture and develop an optimisation proedure for�nding the optimal ontroller realization that max-imises this new measure. Through theoretial anal-ysis and numerial results, it is shown that this im-prove measures is muh less onservative in estimat-ing the FWL losed-loop stability robustness of aontroller realization than the measure given in [7℄.2 Problem formulationConsider the disrete-time losed-loop ontrol sys-tem shown in Fig. 1, where the linear time-invariantplant P̂ is desribed by
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^Figure 1: A disrete-time losed-loop system with adigital ontroller.�x(k + 1) = Ax(k) +Be(k)y(k) = Cx(k) (1)whih is ompletely state ontrollable and observablewith A 2 Rn�n, B 2 Rn�p and C 2 Rq�n; and thedigital stabilizing ontroller Ĉ is desribed by�v(k + 1) = Fv(k) +Gy(k) +He(k)u(k) = Jv(k) +My(k) (2)with F 2 Rm�m, G 2 Rm�q , J 2 Rp�m, M 2Rp�q and H 2 Rm�p. The output-feedbak andobserver-based ontrollers an be uni�ed in this gen-eral struture: Ĉ is an output-feedbak ontrollerwhen H = 0; a full-order observer-based ontrollerwhen F = A �GC, M = 0 and H = B; a redued-order observer-based ontroller, otherwise [8℄,[9℄.Assume that a realization (F0; G0; J0;M0; H0) of Ĉhas been designed. It is well-known that the realiza-tions of Ĉ are not unique. All the realizations of Ĉform the realization set:S = f(F;G; J;M;H) : F = T�1F0T;G = T�1G0;J = J0T;M =M0; H = T�1H0g (3)where T 2 Rm�m is any real-valued non-singularmatrix, alled a similarity transformation. Let wF =Ve(F ), where Ve(�) denotes the olumn stakingoperator. The vetorswF0, wG, wG0, wJ , wJ0, wM ,wM0, wH and wH0 are similarly de�ned. Denotew = 24 w1...wN 35 4= 26664 wFwGwJwMwH 37775 ; w0 4= 26664 wF0wG0wJ0wM0wH0 37775 (4)where N = (m+ p)(m+ q)+mp. We also refer to was a realization of Ĉ . The stability of the losed-loopsystem in Fig. 1 depends on the poles of the matrix�A(w) = � A+BMC BJGC +HMC F +HJ �= � I 00 T�1 � �A(w0) � I 00 T � (5)

All the di�erent realizations w ahieve exatly thesame set of losed-loop poles if they are implementedwith in�nite preision. Sine the losed-loop systemis designed to be stable, the eigenvaluesj�i( �A(w))j = j�i( �A(w0))j < 1; 8i 2 f1; : : : ;m+ng(6)When a w is implemented with a �xed-point proes-sor, it is perturbed into w + �w due to the FWLe�et. Eah element of �w is bounded by ��=2,k�wk1 4= maxi2f1;���;Ng j�wij � �=2 (7)For a �xed point proessor of Bs bits, let Bs = Bi +Bf , where 2Bi is a \normalization" fator to makethe absolute value of eah element of 2�Biw no largerthan 1. Thus, Bi are bits required for the integer partof a number and Bf are bits used to implement thefrational part of a number. It an be seen that� = 2�Bf ; (8)With the perturbation �w, �i( �A(w)) is moved to�i( �A(w + �w)). If an eigenvalue of �A(w + �w)is outside the open unit disk, the losed-loop sys-tem, designed to be stable, beomes unstable withan FWL implemented w. It is, therefore, ritial toknow when the FWL error will ause the losed-loopinstability. This means to ompute the following sta-bility measure [5℄:�0(w) 4= inffk�wk1 : �A(w +�w) is unstableg (9)From this de�nition, it is obvious that:Proposition 1 �A(w + �w) is stable if k�wk1 <�0(w).The larger �0(w) is, the larger FWL error the losed-loop stability an tolerate. Let Bmins be the smallestword length, when used to implement w, an guar-antee the losed-loop stability. Bmins is generally un-known. An estimate of Bmins an be obtained byB̂mins0 = Bi + Int[� log2(�0(w))℄� 1 (10)where the integer Int[x℄ � x. It an easily be seenthat the losed-loop system remains stable if w isimplemented with a �xed-point proessor of at leastB̂mins0 . Moreover, as the stability measure �0(w) is afuntion of the ontroller realizationw, we an searhfor an \optimal" realization that maximizes �0(w):wopt = argmaxw2S �0(w) (11)The diÆulty with this approah is that omputingthe value of �0(w) is still an unsolved open problem.Thus, the stability measure �0(w) and the optimiza-tion proedure (11) have limited pratial value.



3 A new FWL stability measureRoughly speaking, how easily the FWL error �wan ause a stable ontrol system to beome unsta-ble is determined by how lose ���i( �A(w))�� are to 1and how sensitive they are to the ontroller param-eter perturbations. We propose the following FWLstability measure�1a(w) 4= mini2f1;���;m+ng 1� ���i( �A(w))���ai(w) (12)with�ai(w) 4= �Fi(w) + �Gi(w) + �Ji(w)+�Mi(w) + �Hi(w) (13)�Fi(w) 4= Æ(wF ) � ���i( �A(w))���wF 1 (14)�Gi(w) 4= Æ(wG) � ���i( �A(w))���wG 1 (15)�Ji(w) 4= Æ(wJ ) � ���i( �A(w))���wJ 1 (16)�Mi(w) 4= Æ(wM ) � ���i( �A(w))���wM 1 (17)�Hi(w) 4= Æ(wH) � ���i( �A(w))���wH 1 (18)where, for a vetor x = [x1 � � �xp℄T ,Æ(x) = � 0; if x is a zero vetor1; otherwise (19)T denotes the transpose operator and the l1-norm ofx is given byjjxk1 4= pXj=1 jxij (20)De�ningP(w) 4= f�w : ���i( �A(w +�w))��� ���i( �A(w))��� k�wk1 maxj2f1;���;m+ng�aj(w); 8ig (21)we have the following propositionProposition 2 �A(w+�w) is stable if �w 2 P(w)and k�wk1 < �1a(w).

Remarks: The requirement for �w 2 P(w) is notover restrited. In pratie, we will only be interestedin those �w that lie in the bounded region: Q(w) 4=f�w : �(�w) < �0(w)g, i.e. those �w that willnot ause the losed-loop instability. Similar to [10℄,it an be shown that P(w) exists and at least a largepart of Q(w) is overed by P(w). De�ne� (P(w)) 4= inf�w=2P(w) k�wk1 (22)Corollary 1 �1a(w) � �0(w) if �(P(w)) > �0(w).It an be seen that �1a(w) is a lower bound of �0(w),provided that �0(w) is small enough. The assump-tion of small �0(w) is generally valid, and most ofdigital ontrol systems do have a small stability ro-bustness, espeially when fast sampling is applied.The stability measure �1a(w) is omputationallytratable, as it an be shown that:� ���i( �A(w))���F = [ 0 I ℄Li(w) � 0I � (23)� ���i( �A(w))���G = [ 0 I ℄Li(w) �CT0 � (24)� ���i( �A(w))���J = [BT HT ℄Li(w) � 0I � (25)� ���i( �A(w))���M = [BT HT ℄Li(w) �CT0 � (26)� ���i( �A(w))���H = [ 0 I ℄Li(w) �CTMTJT � (27)withLi(w) = Re ���i ( �A(w))y�i ( �A(w))xTi ( �A(w))����i( �A(w))�� (28)where xi( �A(w)) and yi( �A(w)) are the right and re-iproal left eigenvetors related to the �i( �A(w)), re-spetively, and � denotes the onjugate operation.Similar to (10), an estimate of Bmins an be providedwith �1a(w) byB̂mins1a = Bi + Int[� log2(�1a(w))℄� 1 (29)Provided that the onditions of Proposition 2 andCorollary 1 are met, B̂mins1a � B̂mins0 � Bmins . UnlikeB̂mins0 , however, B̂mins1a an be omputed easily.An existing stability measure, whih is also ompu-tationally tratable, is de�ne as [7℄:�1(w) 4= mini2f1;���;m+ng 1� ���i( �A(w))���i(w) (30)



with�i(w) 4= �Fi(w) + �Gi(w) + �Ji(w)+�Mi(w) + �Hi(w) (31)�Fi(w) 4= Æ(wF ) ��i( �A(w))�wF 1 (32)�Gi(w) 4= Æ(wG) ��i( �A(w))�wG 1 (33)�Ji(w) 4= Æ(wJ ) ��i( �A(w))�wJ 1 (34)�Mi(w) 4= Æ(wM ) ��i( �A(w))�wM 1 (35)�Hi(w) 4= Æ(wH) ��i( �A(w))�wH 1 (36)An estimate of Bmins is provided with �1(w) byB̂mins1 = Bi + Int[� log2(�1(w))℄� 1 (37)The key di�erene between �1a(w) and �1(w) is thatthe former onsiders the sensitivity of ���i( �A(w))��while the latter onsiders the sensitivity of �i( �A(w)).It is well known that the stability of a linear disrete-time system depends only on the moduli of its eigen-values. As �1(w) inludes the unneessary eigen-value arguments in onsideration, it is reasonable tobelieve that �1(w) is onservative in omparison with�1a(w). We an stritly verify this by:������ ���i( �A(w))���wj ����� � �����i ( �A(w))��i( �A(w))�wj ������i( �A(w))��= ������i( �A(w))�wj ���� (38)whih means that �ai(w) � �i(w). This leads to:Theorem 1 �1(w) � �1a(w) and B̂mins1 � B̂mins1a .4 Optimization proedureAs di�erent realizations w yield di�erent values of�1a(w), it is of pratial importane to �nd a realiza-tion wopt that maximises �1a(w). Suh a realizationis optimal, sine the digital ontroller implementedwith wopt an tolerate a maximum FWL error. Thisoptimal realization problem is formally de�ned as� 4= maxw2S �1a(w) (39)Given w0, 8i 2 f1; � � � ;m+ ng, we partition

xi( �A(w0)) = �xi;1( �A(w0))xi;2( �A(w0)) � (40)yi( �A(w0)) = �yi;1( �A(w0))yi;2( �A(w0)) � (41)where xi;1( �A(w0));yi;1( �A(w0)) 2 Cn, xi;2( �A(w0)),yi;2( �A(w0)) 2 Cm. It is easily seen from (5) thatxi( �A(w)) = � xi;1( �A(w0))T�1xi;2( �A(w0)) � (42)yi( �A(w)) = � yi;1( �A(w0))T T yi;2( �A(w0)) � (43)From (23){(27), we have� ���i( �A(w))���F = T T Li;2;2(w0)T�T (44)� ���i( �A(w))���G = T T Li;2;1(w0)CT (45)� ���i( �A(w))���J = �BT Li;1;2(w0)+HT0 Li;2;2(w0)�T�T (46)� ���i( �A(w))���M = �BT Li;1;1(w0)+HT0 Li;2;1(w0)�CT (47)� ���i( �A(w))���H = T T �Li;2;1(w0)CTMT0+Li;2;2(w0)JT0 � (48)whereLi;j;l(w0) = Re h��i ( �A(w0))y�i;j( �A(w0))xTi;l( �A(w0))i���i( �A(w0))�� ;j; l = 1; 2 (49)De�ne the following ost funtion:f(T ) 4= mini2f1;���;m+ng 1� j�i( �A(w0))j�ai(w) = �1a(w) (50)The optimal realization problem (39) an then beposed as the following optimisation problem:� 4= maxT2Rm�mdet(T )6=0 f(T ) (51)Although f(T ) is non-smooth and non-onvex, eÆ-ient global optimisation methods exist for solvingfor this kind of optimisation problem. The adaptivesimulated annealing (ASA) [11℄,[12℄ is suh an algo-rithm and is adopted in this study to searh for atrue global optimum Topt of the problem (51). WithTopt, we an obtain the optimal realization wopt.



5 A numerial exampleThis setion presents a numerial example to illus-trate the design proedure and verify our theoretialresults. The plant model used was a modi�ationof the plant studied in [6℄, whih was a single-inputsingle-output system. We had added one more out-put that is the �rst state in the original plant model.The state-spae model of this modi�ed plant wasgiven byA = 266664 3:2439e� 1 �4:5451e+ 0 �4:0535e+ 01:4518e� 1 4:9477e� 1 �4:6945e� 11:6814e� 2 1:6491e� 1 9:6681e� 11:1889e� 3 1:8209e� 2 1:9829e� 16:1301e� 5 1:2609e� 3 1:9930e� 2�2:7003e� 3 0�3:1274e� 4 0�2:2114e� 5 01:0000e+ 0 02:0000e� 1 1 377775 ; B = 266664 1:4518e� 11:6814e� 21:1889e� 36:1301e� 52:4979e� 6 377775C = � 0 0 1:6188e+ 0 �1:5750e� 11 0 0 0�4:3943e+ 10 �The losed-loop poles as given in [6℄ were used in de-sign, and the designed redued-order observer-basedontroller obtained using a standard design proe-dure [9℄ had the form:F0 = � 0 1�9:3303e� 1 1:9319e+ 0 �G0 = � 4:1814e� 2 2:7132e+ 23:9090e� 2 1:0167e+ 3 �J0 = [ 3:0000e� 4 5:0000e� 4 ℄M0 = [ 0 6:1250e� 1 ℄ ; H0 = � 7:8047e+ 17:3849e+ 1 �With this initial ontroller realizationw0, the transi-tion matrix �A(w0) was formed using (5), from whihthe poles and eigenvetors of the ideal losed-loopsystem were omputed. The optimisation problem(51) was then formed with T 2 R2�2. The ASAalgorithm was used to �nd a Topt, whih was:Topt = � 1:4714e+ 1 3:2071e+ 11:3588e+ 1 3:0531e+ 1�From Topt, the orresponding optimal ontroller real-ization (Fopt; Gopt; Jopt;Mopt; Hopt) was determined

Fopt = � 9:8677e� 1 1:4943e� 2�2:9047e� 2 9:4511e� 1 �Gopt = � 1:7066e� 3 �1:8080e+ 35:2084e� 4 8:3794e+ 2 �Jopt = [ 1:1208e� 2 2:4887e� 2 ℄Mopt = [ 0 6:1250e� 1 ℄ ; Hopt = � 1:0691e+ 01:9430e+ 0�For the initial and optimal ontroller realizations, thetrue minimal bit lengths Bmins that an guaranteethe losed-loop stability were also determined using aomputer simulation method. Table 1 ompares thevalues of the two stability measures, orrespondingestimated minimum bit lengths and true minimumbit lengths for the initial and optimal ontroller re-alizations. The results learly show that the newmeasure �1a is muh less onservative than the ex-isting measure �1 in estimating the true minimumbit length.realization w0 woptBi 10 11�1a 2:556877e� 6 8:696940e� 5B̂mins1a 28 24�1 4:050854e� 7 3:012354e� 6B̂mins1 31 29Bmins 22 21Table 1: Comparison of the two stability measures,orresponding estimated minimum bit lengths andtrue minimum bit lengths for the two redued-orderobserver-based ontroller realizations.We also omputed the unit impulse response of thelosed-loop ontrol system when the ontrollers werethe in�nite-preision implemented w0 and variousFWL implemented realizations. Notie that any re-alization w 2 S, implemented in in�nite preision,will ahieve the exat performane of the in�nite-preision implemented w0, whih is the designed on-troller performane. For this reason, the in�nite-preision implemented w0 is referred to as the idealontroller realization wideal. Figs. 2 and 3 omparesthe unit impulse response of the �rst plant output forthe ideal ontroller wideal with those of various 22-bit and 21-bit implemented realizations, respetively.It an be seen that the losed-loop beame unsta-ble with a 21-bit implemented ontroller realizationw0. However, the losed-loop system remained sta-ble with the 21-bit implemented wopt.6 ConlusionsIn this paper, we have presented an approah to ad-dress the stability issue of the losed-loop disrete-



time ontrol system where a digital ontroller is im-plemented with a �xed-point proessor. A new FWLlosed-loop stability measure has been derived. Ithas been shown that this improved measure is a muhless onservative lower bound of the omputationallyintratable true stability measure than other exist-ing measures. As this new FWL stability measureis a funtion of the ontroller realization, it an beused as a ost funtion for obtaining an optimal on-troller realization that maximises the proposed mea-sure. An eÆient optimisation strategy has been de-veloped based on the ASA algorithm for optimisinga uni�ed ontroller struture whih inludes output-feedbak and observer-based ontrollers.
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