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Abstract

This paper investigates the stability issue of the
discrete-time control system, where a digital con-
troller, implemented with finite word length (FWL),
is used. A new tractable stability measure is derived,
which is much less conservative than some existing
measures in estimating the closed-loop stability ro-
bustness of an FWL implemented controller. An op-
timisation procedure is developed based on this im-
proved measure to find the optimal realization for
a general controller structure that includes output-
feedback and observer-based controllers. A numeri-
cal example is used to verify the theoretical analysis
and to illustrate the design procedure.

Keywords—finite word length, closed-loop stability,
optimization.

1 Introduction

The current controller design methodology often as-
sumes that the controller is implemented exactly,
even though in reality a control law can only be re-
alized in finite precision. The justification of this
assumption is usually on the ground that the plant
uncertainty is the most significant source of uncer-
tainty. However, researchers have realized that the
controller uncertainty has significant influence on the
performance of the control system. A stable control
system may achieve a lower than predicted perfor-
mance or even become unstable when the control law
is implemented with a finite-precision device. This is
highlighted in the so-called fragility puzzles [1]-[3]:
some robust optimal controllers are fragile. Ironi-
cally, these controllers have been designed to tolerate
uncertainty in the plant, and yet small perturbations
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on the controller parameters may cause the closed-
loop system to go unstable.

The FWL effect on the closed-loop stability depends
on the controller realization structure. This property
can be utilized to “select” controller realization in or-
der to improve the “robustness” of closed-loop stabil-
ity under controller perturbations. Several metrics,
such as the LQG measure [4], the stability radius and
Hoo based measure [5], and the pole-sensitivity mea-
sure based on an ly-norm [6], have been proposed to
quantify the FWL effect on closed-loop stability. The
approach of [6] is attractive because the design pro-
cedure for searching for optimal FWL controller real-
izations that maximize the proposed measure was de-
veloped. Recently, another tractable measure based
on an ly-norm [7] has been proposed, which provides
a less conservative estimate of the FWL closed-loop
stability robustness than the measure of [6].

The contribution of this paper is two fold. Unlike
the most existing works which only consider output-
feedback controller structure, we consider a general
controller structure that includes output-feedback
and observer-based controllers. We derive a new
tractable stability measure for the unified controller
structure and develop an optimisation procedure for
finding the optimal controller realization that max-
imises this new measure. Through theoretical anal-
ysis and numerical results, it is shown that this im-
prove measures is much less conservative in estimat-
ing the FWL closed-loop stability robustness of a
controller realization than the measure given in [7].

2 Problem formulation

Consider the discrete-time closed-loop control sys-
tem shown in Fig. 1, where the linear time-invariant
plant P is described by



Figure 1: A discrete-time closed-loop system with a
digital controller.

x(k + 1) = Ax(k) + Be(k) (1)
y(k) = Cx(k)

which is completely state controllable and observable
with A € R™*", B € R"*? and C' € R7*"; and the
digital stabilizing controller C' is described by

v(k+1) = Fv(k) + Gy(k) + He(k) @)
u(k) = Jv(k) + My(k)

with F' € R™*™ G € R™*4, J € RP*™ M €
RP*® and H € R™*P. The output-feedback and
observer-based controllers can be unified in this gen-
eral structure: C is an output-feedback controller
when H = 0; a full-order observer-based controller
when F'= A - GC, M =0 and H = B; a reduced-
order observer-based controller, otherwise [8],[9].

Assume that a realization (Fy, Go, Jo, Mo, Hy) of C
has been designed. It is well-known that the realiza-
tions of C' are not unique. All the realizations of C
form the realization set:

S={(F,G,J,M,H): F=T'F,T,G =T"'Go,
J=JT,M = My, H=T""Hy} (3)

where T' € R™*™ is any real-valued non-singular
matrix, called a similarity transformation. Let wp =
Vec(F), where Vec(-) denotes the column stacking
operator. The vectors wrg, Wa, WGo, Wi, W0, Was,
W0, Wy and wygo are similarly defined. Denote

WF WFo
w1 W@ W0
. A A
w = =|lwy |, wo=| wyo (4)
wN W s W ro
WH WHo

where N = (m +p)(m + ¢q) +mp. We also refer to w
as a realization of C. The stability of the closed-loop
system in Fig. 1 depends on the poles of the matrix

i(w) = | A+BMC  BJ
= |GC+HMC F+HJ

[ e

All the different realizations w achieve exactly the
same set of closed-loop poles if they are implemented
with infinite precision. Since the closed-loop system
is designed to be stable, the eigenvalues

As(Aw))| = N (A(wo))| < 1, Vi € {L,...,m+n}(6)

When a w is implemented with a fixed-point proces-
sor, it is perturbed into w + Aw due to the FWL
effect. Each element of Aw is bounded by +e/2,

4

AW||so Aw;| < €/2
IAw]| maxN}l w;| < €/ (7)

ie{l,-,

For a fixed point processor of B; bits, let B; = B; +
By, where 257 is a “normalization” factor to make
the absolute value of each element of 2~ 5w no larger
than 1. Thus, B; are bits required for the integer part
of a number and By are bits used to implement the
fractional part of a number. It can be seen that

e=2Br, (8)
With the perturbation Aw, \;(A(w)) is moved to
Xi(A(w + Aw)). If an eigenvalue of A(w + Aw)
is outside the open unit disk, the closed-loop sys-
tem, designed to be stable, becomes unstable with
an FWL implemented w. It is, therefore, critical to
know when the FWL error will cause the closed-loop
instability. This means to compute the following sta-
bility measure [5]:

fio(w) 2 inf{||Aw||s : A(W + Aw) is unstable} (9)

From this definition, it is obvious that:

Proposition 1 A(w 4+ Aw) is stable if [|[Aw]||s <
o (W).

The larger po(w) is, the larger FWL error the closed-
loop stability can tolerate. Let B™® be the smallest
word length, when used to implement w, can guar-
antee the closed-loop stability. B™" is generally un-
known. An estimate of B™" can be obtained by

BR™ = B; + Int[— log, (uo(w))] — 1 (10)

where the integer Int[z] > x. It can easily be seen
that the closed-loop system remains stable if w is
implemented with a fixed-point processor of at least
Bmin_Moreover, as the stability measure po(w) is a
function of the controller realization w, we can search
for an “optimal” realization that maximizes uo(w):

Wopt = arg Ivf}gfg{ to (W) (11)

The difficulty with this approach is that computing
the value of ug(w) is still an unsolved open problem.
Thus, the stability measure uo(w) and the optimiza-
tion procedure (11) have limited practical value.



3 A new FWL stability measure

Roughly speaking, how easily the FWL error Aw
can cause a stable control system to become unsta-
ble is determined by how close |A;(A(w))| are to 1
and how sensitive they are to the controller param-
eter perturbations. We propose the following FWL
stability measure

1— x4
i L iAW) (12)
i€{l,---,m+n} O'M‘(W)

1

P1a(W)
with

O'M'(W) é api(w) + aGi(w) + oni(w)

+ani(w) + ami(w) (13)
api(w) £ 8(wp) %T;”' (14)
agi(w) 2 8(wa) “;?(G))' (15)
asi(w) 2 6(wy) W‘ (16)
oni(w) £ 8(wa) "*a(TfW”' an)
s (w) 2 (wp) %ﬁvm‘ (18)
where, for a vector x = [z -+~ ],

0, if x is a zero vector

0(x) = { 1, otheriv?see o (19)

T denotes the transpose operator and the [;-norm of
x is given by

AL
Il = Jail (20)

=1

Defining
P(w) 2 {Aw: [ Ni(A(w +Aw))| — [Ni(A(w))]

SllAwlloo  max  og;(w), Y} (21)
J

e{1,--,m+n}

we have the following proposition

Proposition 2 A(w + Aw) is stable if Aw € P(w)
and [|AW||oo < 14 (W).

Remarks: The requirement for Aw € P(w) is not

over restricted. In practice, we will only be interested

in those Aw that lie in the bounded region: Q(w) =

{Aw : u(Aw) < po(w)}, ie. those Aw that will
not cause the closed-loop instability. Similar to [10],
it can be shown that P(w) exists and at least a large
part of Q(w) is covered by P(w). Define

p(P(w) = inf

A 22
Al AW (22)

Corollary 1 pj1,(w) < po(w) if p(P(w)) > po(w).

It can be seen that p1,(w) is a lower bound of po(w),
provided that po(w) is small enough. The assump-
tion of small ug(w) is generally valid, and most of
digital control systems do have a small stability ro-
bustness, especially when fast sampling is applied.

The stability measure p;,(w) is computationally
tractable, as it can be shown that:

0 |>\1(A(W))| 0

T:[O INL;(w) [I] (23)
9| Ni(A(w))| oT

—c 10 I]Li(W)[ 0 } (24)
0 |>\1(A(W))| 0

—57 - [BT HT]Lij(w) {I] (25)
0 |>‘1(A(W))| cT
T:[BT HT]Li(w) { 0 ] (26)
O |Ni(A(w TAT
Iy 1y e
with

Liw) = 2N (&wf)y: AT AED] e

where x;(A(w)) and y;(A(w)) are the right and re-
ciprocal left eigenvectors related to the \;(A(w)), re-
spectively, and * denotes the conjugate operation.
Similar to (10), an estimate of B™™ can be provided

with p1,(W) by
By = Bi + Int[~log, (u1a(w))] — 1 (29)

Provided that the conditions of Proposition 2 and
Corollary 1 are met, B3'* > B'"™ > B™". Unlike

BY™, however, B{ can be computed easily.

An existing stability measure, which is also compu-
tationally tractable, is define as [7]:

A 1= W)

30
ie{l,-H-l-l,m+n} oi(W) (30)

(W)



with

oi(w) 2 Bri(w) + Bai(w) + Bri(w)

+Bumi(w) + Bri(w) (31)
i) £ s(wp) |20 3
fai(w) £ 6w |20 3
fuston) 2 o) | 2| (59
R (35)
i) 2 o) | 2D | (36)
An estimate of B™" is provided with p (w) by
B = B+ il loga n (w)] 1 37)

The key difference between p;,(w) and py (w ) is that
the former considers the sensitivity of |\;(A(w))|
while the latter considers the sensitivity of \;(A(w)).
It is well known that the stability of a linear discrete-
time system depends only on the moduli of its eigen-
values. As pi(w) includes the unnecessary eigen-
value arguments in consideration, it is reasonable to
believe that p (w) is conservative in comparison with
114(wW). We can strictly verify this by:

9 (Aw))] X (A(w)) 20|
8w]~ - |>\ (1‘1 )|
ONi(A(w))
‘ Ow; ‘ (%)

which means that o4;(w) < o;(w). This leads to:
Theorem 1 1 (W) < fi1,(w) and B > Bmin,

sla

4 Optimization procedure

As different realizations w yield different values of
H14(W), it is of practical importance to find a realiza-
tion wop, that maximises p1,(w). Such a realization
is optimal, since the digital controller implemented
with wop can tolerate a maximum FWL error. This
optimal realization problem is formally defined as

A
U = max pq(w) (39)

Given wy, Vi € {1,---,m + n}, we partition

(Ao = | 5| v
yi(A(wo)) = BZ;&_&E;H "

Where_ Xi71(fi(w0)),yi71(1‘1(w0)) e Cn, Xi,2(1‘1(wo)),
vi2(A(wg)) € C™. Tt is easily seen from (5) that

xi(A(w)) = {Tf‘f;iif(%i)vz,))] .
iAo = | i) | w
From (23)—(27), we have
8|>\i59/11?(W))| = TTLiss(wo)T 7T (44)
d|Ni(A(w))|
oG = TTLi(wo)CT (45)
ONACI] g7, (o)
57 4,1,2\ W0
+HJ Lisa(wo)) T 7 (46)
a|>\i(A(w))| _ (BTL- (Wo)
Y i,1,1 0
-I-HoTLi,2,1(W0)) cT (47)
ON(Aw)|  _ T7 (Lin (wo)CTMT
5 ,2,1 0
+Li,2,2(W0)J0T) (48)
where

Re [X; (A(wo))yt,; (A(wo))xT, (A(wo)) |

)

|Xi(A(wo))| ’

jl=1,2 (49)

Liji(wo) =

Define the following cost function:

4 . 1—\(A(wo))|
a i€{1’r-n--l,?n+n} Oai(W) = Ha(w) (50)

f(T)
The optimal realization problem (39) can then be
posed as the following optimisation problem:

2 max f(T) (51)

TER™MXm
det(T)#0

v

Although f(T') is non-smooth and non-convex, effi-
cient global optimisation methods exist for solving
for this kind of optimisation problem. The adaptive
simulated annealing (ASA) [11],[12] is such an algo-
rithm and is adopted in this study to search for a
true global optimum Topy of the problem (51). With
Topt, We can obtain the optimal realization wopt.



5 A numerical example

This section presents a numerical example to illus-
trate the design procedure and verify our theoretical
results. The plant model used was a modification
of the plant studied in [6], which was a single-input
single-output system. We had added one more out-
put that is the first state in the original plant model.
The state-space model of this modified plant was

given by
3.2439¢ — 1 —4.5451le+0 —4.0535e+0
1.4518e —1  4.9477e —1 —4.6945e —1
A= 1.6814e—2 1.649le—1  9.6681le —1
1.1889% — 3 1.8209e —2  1.9829e —1
6.1301e — 5 1.2609e —3  1.9930e — 2
—2.7003e -3 0 1.4518e — 1
—3.1274e—-4 O 1.6814e — 2
—22114e—-5 0 |, B=| 1.188% —3
1.0000e+0 0 6.1301le — 5
2.0000e —1 1 2.4979 — 6
C— 0 0 1.6188e+0 —1.5750e—1
110 0 0
—4.3943e + 1 }
0

The closed-loop poles as given in [6] were used in de-
sign, and the designed reduced-order observer-based
controller obtained using a standard design proce-
dure [9] had the form:

[ 0 1
07~ 1-9.3303e—1 1.9319¢+0

G = [ 418146 — 2 2.7132¢ 42
07 | 3.9090e —2 1.0167¢ + 3

Jo =[3.0000e —4 5.0000e — 4]

My=1[0 6.1250e—1], Hp= {7'8047”1}

7.3849% + 1

With this initial controller realization wq, the transi-
tion matrix A(wg) was formed using (5), from which
the poles and eigenvectors of the ideal closed-loop
system were computed. The optimisation problem
(51) was then formed with T € R?*2. The ASA
algorithm was used to find a T}, which was:

14714e+1 3.207le+1

Topt = | 1 3588¢ +1 3.0531e + 1

From T, the corresponding optimal controller real-
ization (Fopt, Gopts Jopts Mopts Hopt) Was determined

P 0.8677e — 1 1.4943e — 2
Pt T | _929047¢e —2 9.451le—1

1.7066e — 3

Gopt = { 5.2084e — 4

—1.8080e + 3
8.3794e + 2

Jopt = [1.1208¢ — 2 2.4887¢ — 2]
1.0691e + 0
Mype = [0 6.1250e — 1], Hopy = {1_9430; 0]

For the initial and optimal controller realizations, the
true minimal bit lengths B™" that can guarantee
the closed-loop stability were also determined using a
computer simulation method. Table 1 compares the
values of the two stability measures, corresponding
estimated minimum bit lengths and true minimum
bit lengths for the initial and optimal controller re-
alizations. The results clearly show that the new
measure ji1, iS much less conservative than the ex-
isting measure p; in estimating the true minimum
bit length.

realization ) Wopt
B; 10 11
Uig 2.556877e — 6 | 8.696940e — 5
Bmin 28 24
1 4.050854e — 7 | 3.012354e — 6
Buwin 31 29
B 22 21

Table 1: Comparison of the two stability measures,
corresponding estimated minimum bit lengths and
true minimum bit lengths for the two reduced-order
observer-based controller realizations.

We also computed the unit impulse response of the
closed-loop control system when the controllers were
the infinite-precision implemented wy and various
FWL implemented realizations. Notice that any re-
alization w € S, implemented in infinite precision,
will achieve the exact performance of the infinite-
precision implemented wg, which is the designed con-
troller performance. For this reason, the infinite-
precision implemented wy is referred to as the ideal
controller realization wigea;. Figs. 2 and 3 compares
the unit impulse response of the first plant output for
the ideal controller w;igeas With those of various 22-
bit and 21-bit implemented realizations, respectively.
It can be seen that the closed-loop became unsta-
ble with a 21-bit implemented controller realization
wo. However, the closed-loop system remained sta-
ble with the 21-bit implemented wopy.

6 Conclusions

In this paper, we have presented an approach to ad-
dress the stability issue of the closed-loop discrete-



time control system where a digital controller is im-
plemented with a fixed-point processor. A new FWL
closed-loop stability measure has been derived. It
has been shown that this improved measure is a much
less conservative lower bound of the computationally
intractable true stability measure than other exist-
ing measures. As this new FWL stability measure
is a function of the controller realization, it can be
used as a cost function for obtaining an optimal con-
troller realization that maximises the proposed mea-
sure. An efficient optimisation strategy has been de-
veloped based on the ASA algorithm for optimising
a unified controller structure which includes output-
feedback and observer-based controllers.

20
10

unit impulse response
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Figure 2: Comparison of unit impulse response
for the infinite-precision controller implementation
Wideal With those for the two 22-bit implemented con-
troller realizations wo and wqpg.
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Figure 3: Comparison of unit impulse response
for the infinite-precision controller implementation

Wideal With those for the two 21-bit implemented con-
troller realizations wo and wop.

Acknowledgements

The first author, S. Chen, wishes to thank the sup-
port of the UK EPSRC under grant (GR/M16894).

References

[1] L.H. Keel and S.P. Bhattacharryya, “Robust,
fragile, or optimal?” I[EFEE Trans. Automatic
Control, Vol.42, No.8, pp.1098-1105, 1997.

[2] P.M. M&kild, “Comments on ‘Robust, fragile,
or optimal?’)” IEEFE Trans. Automatic Control,
Vol.43, No.9, pp.1265-1267, 1998.

[3] P.M. Maikila, “Fragility and robustness puz-
zles,” in Proc. American Control Conf. (San
Diego, CA, USA), June 2-4, 1999, pp.2914—
2919.

[4] P. Moroney, A.S. Willsky and P.K. Houpt, “The
digital implementation of control compensators:
the coefficient wordlength issue,” IEEE Trans.
Automatic Control, Vol.25, No.8, pp.621-630,
1980.

[5] I.J. Fialho and T.T. Georgiou, “On stability and
performance of sampled data systems subject
to word length constraint,” IEEE Trans. Au-
tomatic Control, Vol.39, No.12, pp.2476-2481,
1994.

[6] G. Li, “On the structure of digital controllers
with finite word length consideration,” IEEFE
Trans. Automatic Control, Vol.43, pp.689—693,
1998.

[7] R.H. Istepanian, G. Li, J. Wu and J. Chu,
“Analysis of sensitivity measures of finite-
precision digital controller structures with
closed-loop stability bounds,” IEE Proc. Con-
trol Theory and Applications, Vol.145, No.5,
pp.-472-478, 1998.

[8] T.Kailath, Linear Systems. Prentice-Hall, 1980.

[9] J. O'Reilly, Observers for Linear Systems. Lon-
don: Academic Press, 1983.

[10] S. Chen, J. Wu, R.H. Istepanian, J. Chu
and J.F. Whidborne, “Optimizing stability
bounds of finite-precision controller structures
for sampled-data systems in the delta operator
domain,” IEE Proc. Control Theory and Appli-
cations, Vol.146, No.6, pp.517-526, 1999.

[11] L. Ingber, “Simulated annealing: practice ver-
sus theory,” Mathematical and Computer Mod-
eling, Vol.18, No.11, pp.29-57, 1993.

[12] S. Chen and B.L. Luk, “Adaptive simulated
annealing for optimization in signal processing
applications,” Signal Processing, Vol.79, No.1,
pp.117-128, 1999.



