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Abstract— Evolutionary computational intelligence methods
have found wide-ranging application in communication and
other walks of engineering. The main attraction of adopting
evolutionary computational intelligence algorithms is that they
may facilitate global or near global optimal designs with
affordable computational costs. This contribution considers
the beamforming assisted multiple-antenna receiver for multi-
user quadrature amplitude modulation systems. The bit error
rate (BER) expression as the function of the beamformer’s
weight vector is derived explicitly. The minimum BER (MBER)
beamforming receiver can then be obtained as the solution of the
resulting optimisation problem that minimises the MBER cri-
terion. We propose to employ a differential evolution algorithm
to solve the MBER optimisation by its virtue of computational
efficiency and ability to locate a global minimum quickly.

I. INTRODUCTION

Evolutionary or bio-inspired computational intelligence
methods, such as the generic algorithm (GA), ant colony
optimisation (ACO), particle swarm optimisation (PSO),
and differential evolution (DE) algorithm have found ever-
increasing applications in all walks of engineering, especially
communication signal processing, where attaining global or
near global optimal solutions at affordable computational
costs are critical. The Communication Research Group at
the University of Southampton has a long and successful
record in applying the GA, ACO and PSO in communica-
tion system design applications [1]–[12]. Recently, DE has
become popular and has been applied to a variety of engi-
neering applications. The DE algorithm [13]–[16] constitutes
a random guided population-based search method, which em-
ploys repeated cycles of candidate-solution re-combination
and selection operations for guiding the population towards
the vicinity of a global optimum. Supported by extensive
empirical results, it is believed that the DE algorithm is
capable of arriving at a globally optimal solution very
efficiently. The effectiveness of DE in tackling challenging
optimisation problems have now widely been recognised by
the computational intelligence community. This contribution
reports an application of the DE algorithm to multiple-
antenna communication receiver design.

The ever-increasing demand for mobile communication
capacity has motivated the employment of space-division
multiple access (SDMA) for the sake of improving the
achievable spectral efficiency. A particular approach that
has shown real promise in achieving substantial capacity
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enhancements is the use of adaptive beamforming receiver
with antenna arrays [17]–[19]. Classically, beamforming de-
sign is based on minimising the mean square error (MSE)
criterion. For a communication system, however, it is the
bit error rate (BER), not the MSE, that really matters, the
minimum BER (MBER) beamforming has been derived for
binary phase shift keying (BPSK) systems [20], which has
a bandwidth efficiency of 1 bit per symbol, and quadrature
phase shift keying (QPSK) systems [21], which enables a
bandwidth efficiency of 2 bits per symbol. Note that a QPSK
system basically consists of two BPSK systems. Quadrature
amplitude modulation (QAM) schemes [22], which offers
much higher bandwidth efficiency, have become popular in
numerous wireless standards by virtue of providing a high
throughput. Minimum symbol error rate (MSER) beamform-
ing receiver has been conceived for QAM systems [23].

To the best of our knowledge, however, no direct MBER
solution has been derived for QAM systems to date. We
explicitly derive the BER expression as the function of the
beamformer’s weight vector, and formulate the MBER beam-
forming for QAM systems as the solution of the resulting
optimisation problem that minimises the MBER criterion.
In principle, the MBER beamforming design for the QAM
system can be obtained by minimising the BER criterion
based on a gradient-descent algorithm [20], [21], [24]. How-
ever, there are some potential drawbacks associated with the
gradient-descent approach. The calculation of the gradient
for the BER cost function of the QAM beamforming design
imposes high computational complexity, and the gradient-
descent algorithm converges slowly owing to the fact that the
BER cost function is a highly complex nonlinear function
of the beamformer’s weight vector. The initial choice of
the weight vector also significantly influences the solution
obtained by the gradient-based optimisation. To overcome
these difficulties, we adopt a DE algorithm [13]–[16] to
this challenging MBER optimisation. The DE algorithm has
the capability to arrive at a globally optimal solution very
efficiently, and this makes the DE algorithm aided MBER
design computationally attractive.

II. SYSTEM MODEL

Consider the SDMA system that employs the L-element
receive antenna array to support M QAM users. The receive
signal vector x(k) = [x1(k) x2(k) · · ·xL(k)]T can be
expressed as [19], [23]

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (1)



where k denotes the symbol index, the Gaussian white noise
vector n(k) = [n1(k) n2(k) · · · nL(k)]T has a covariance
matrix E[n(k)nH(k)] = 2σ2

nIL with IL denoting the L ×
L identity matrix, b(k) = [b1(k) b2(k) · · · bM (k)]T is the
transmitted symbol vector of the M users, and the system
matrix P is given by

P = [A1s1 A2s2 · · ·AMsM ] = [p1 p2 · · ·pM ], (2)

with Ai being the ith channel coefficient and the steering
vector for user i given by

si =
[
ejωct1(θi) ejωct2(θi) · · · ejωctL(θi)

]T
. (3)

In (3), tl(θi) is the relative time delay at array element l for
user i, θi is the direction of arrival for user i, and ωc = 2πfc
is the angular carrier frequency. We define the system’s signal
to noise ratio as SNR = Eb/No = Eb/2σ2

n, where Eb is the
average energy per bit of the QAM symbol.

For notational simplicity, we assume the 16-QAM modu-
lation. Therefore, the kth transmitted symbol of user i

bi(k) ∈ {±1± j, ± 1± 3j, ± 3± j, ± 3± 3j}, (4)

where j =
√
−1. The approach adopted in this study,

however, can be extended to higher-order QAM schemes.
Without loss of generality, user 1 is assumed to be the desired
user and the rest of the sources are the interfering users. A
linear beamformer is employed, whose output is given by

y(k) = wHx(k) = wHx̄(k) + wHn(k) = ȳ(k) + e(k), (5)

where w = [w1 w2 · · ·wL]T is the complex-valued beam-
former weight vector, and e(k) is Gaussian distributed with
zero mean and E[|e(k)|2] = 2σ2

nw
Hw. Define the com-

bined impulse response of the beamformer and the system
as wHP = [c1 c2 · · · cM ]. The beamformer’s output can
alternatively be expressed as

y(k) = c1b1(k) +
M∑

i=2

cibi(k) + e(k), (6)

where the first term is the desired signal and the second term
represents the residual interfering signal. Denote yR(k) =
<[y(k)] and yI(k) = =[y(k)]. Provided that c1 is real-valued
and positive, the decisions regarding the two in-phase bits
and two quadrature bits can be made separately based on
yR(k) and yI(k), respectively. If c1 = wHp1 is complex-
valued, the rotating operation wnew = cold

1
|cold

1 |
wold can be used

to ensure a real and positive c1. This rotation is a linear
transformation and does not alter the system’s BER [23].

The in-phase bit combinations that map to the symbols
bR1(k) = <[b1(k)] = −3,−1, 1, 3 are 11, 10, 00, 01.
The two in-phase bits that form the real part of 16-QAM
symbol are known as the class 1 (C1) and class 2 (C2) bits,
respectively [22]. The decision for the in-phase C1 bit is
given by {

C1 bit = 0, if yR(k) > 0,
C1 bit = 1, if yR(k) ≤ 0, (7)

and the decision regarding the in-phase C2 bit is given by
{

C2 bit = 0, if − 2c1 < yR(k) < 2c1,
C2 bit = 1, if yR(k) ≤ −2c1 or yR(k) ≥ 2c1.

(8)

The decision rules for the quadrature C1 and C2 bits are
given similarly based on yI(k).

Traditionally, the beamformer’s weight vector is deter-
mined by minimising the MSE metric of E[|b1(k)−y(k)|2],
which leads to the following minimum MSE (MMSE) solu-
tion [25]

wMMSE =
(
PPH +

2σ2
n

σ2
b

IL

)−1

p1, (9)

where σ2
b is the average QAM symbol energy. The previous

work [23] has derived the beamforming solution based on
minimising the system’s achievable SER. One of the contri-
butions of this study is to derive the MBER beamforming
solution for SDMA based QAM systems. As we will see,
the derivation of the BER expression as a function of the
beamformer’s weight vector is much more complicated than
the SER expression given in [23].

III. MINIMUM BIT ERROR RATE BEAMFORMING

The noise-free part of the beamformer input takes values
from the finite set given by x̄(k) ∈ X

a

= {x̄(q) = Pb(q), 1 ≤
q ≤ Nb}, where Nb = 16M and b(q), 1 ≤ q ≤ Nb, are all the
legitimate equiprobable sequences of b(k). Thus, the noise-
free part of the beamformer output only takes values from
the finite set given by ȳ(k) ∈ Y

a

= {ȳ(q) = wHx̄(q), 1 ≤
q ≤ Nb}. The real and imaginary parts of the set Y are
respectively

{
YR

a

= {ȳ(q)
R = <[ȳ(q)], ȳ(q) ∈ Y},

YI
a

= {ȳ(q)
I = =[ȳ(q)], ȳ(q) ∈ Y}.

(10)

The set YR can be divided into the four conditioned subsets
{

Y(±1)
R

a

= {ȳ(q)
R ∈ YR : bR1(k) = ±1},

Y(±3)
R

a

= {ȳ(q)
R ∈ YR : bR1(k) = ±3}.

(11)

Similarly, YI can be partitioned into the four subsets Y(±1)
I

and Y(±3)
I , depending on the values of bI1(k). The number

of the points in each of these subsets is Nsb = Nb/4.
The conditional PDF of yR(k) given bR1(k) = +i is

p(yR|+ i) =
1
Nsb

∑

ȳ
(q)
R ∈Y(+i)

R

1√
2πσ2

nwHw
e
− (yR−ȳ(q)

R )2

2σ2
nwHw , (12)

where i = 1, 3. Taking into account the symmetric distribu-
tion of Y(+i)

R and Y(−i)
R with respect to the decision boundary

yR = 0 [23], the in-phase C1 bit error probability can be
found to be

PER,C1(w) =
1

2Nsb

∑

ȳ
(q)
R ∈Y(+)

R

Q
(
g

(q)
R,C1(w)

)
, (13)



where Y(+)
R = Y(+1)

R

⋃
Y(+3)
R , Q(u) = 1√

2π

∞∫
u

e−
v2
2 d v,

g
(q)
R,C1(w)=

sgn(<[b(q)1 ])ȳ(q)
R

σn
√

wHw
=

sgn(b(q)R1
)<[wHx̄(q)]

σn
√

wHw
, (14)

and b(q)1 denotes the first element of b(q), corresponding to
the desired user’s symbol b1(k). Similarly, the quadrature C1
bit error probability is given by

PEI ,C1(w) =
1

2Nsb

∑

ȳ
(q)
I ∈Y(+)

I

Q
(
g

(q)
I,C1(w)

)
, (15)

with Y(+)
I = Y(+1)

I

⋃
Y(+3)
I and

g
(q)
I,C1(w)=

sgn(=[b(q)1 ])ȳ(q)
I

σn
√

wHw
=

sgn(b(q)I1 )=[wHx̄(q)]

σn
√

wHw
, (16)

The C2 bit error rate is much more involved. After some
lengthy derivation, which is omitted here for space economy,
the conditional in-phase C2 BER given bR1(k) = +1 can be
shown to be

P
(+1)
ER,C2(w) =

1
Nsb

∑

ȳ
(q)
R ∈Y(+1)

R

(
Q
(
g

(q,a)
R,C2(w)

)
+Q
(
g

(q,b)
R,C2(w)

))
,

(17)
with

g
(q,a)
R,C2(w) =

2c1 + sgn(b(q)R1
)ȳ(q)
R

σn
√

wHw
, (18)

g
(q,b)
R,C2(w) =

2c1 − sgn(b(q)R1
)ȳ(q)
R

σn
√

wHw
, (19)

After a lengthy simplification, which we again omit here
for space economy, the conditional in-phase C2 BER given
bR1(k) = +3 can be expressed as

P
(+3)
ER,C2(w) =

1
Nsb

∑

ȳ
(q)
R ∈Y(+3)

R

(
Q
(
g

(q,c)
R,C2(w)

)
−Q
(
g

(q,a)
R,C2(w)

))
,

(20)
where

g
(q,c)
R,C2(w) =

sgn(b(q)R1
)ȳ(q)
R − 2c1

σn
√

wHw
. (21)

Thus, the in-phase C2 bit error probability is given by

PER,C2(w) =
1
2

(
P

(+1)
ER,C2(w) + P

(+3)
ER,C2(w)

)
. (22)

Similarly, the quadrature C2 bit error probability is given by

PEI ,C2(w) =
1
2

(
P

(+1)
EI ,C2(w) + P

(+3)
EI ,C2(w)

)
, (23)

where

P
(+1)
EI ,C2(w) =

1
Nsb

∑

ȳ
(q)
I ∈Y(+1)

I

(
Q
(
g

(q,a)
I,C2(w)

)
+Q

(
g

(q,b)
I,C2(w)

))
,

(24)

P
(+3)
EI ,C2(w) =

1
Nsb

∑

ȳ
(q)
I ∈Y(+3)

I

(
Q
(
g

(q,c)
I,C2(w)

)
−Q

(
g

(q,a)
I,C2(w)

))
,

(25)

while g
(q,a)
I,C2(w), g(q,b)

I,C2(w) and g
(q,c)
I,C2(w) are obtained by

substituting sgn(b(q)R1
) and ȳ

(q)
R with sgn(b(q)I1 ) and ȳ

(q)
I in

(18), (19) and (21), respectively.
The BER of the 16-QAM beamformer with weight vector

w is therefore given by

PE(w) =
1
4

(
PER,C1(w) + PEI ,C1(w) + PER,C2(w)

+ PEI ,C2(w)
)
, (26)

and the MBER beamformer solution is defined as

wMBER = arg min
w

PE(w). (27)

A MBER beamformer design may be obtained based on a
gradient-descent numerical optimisation. However, calculat-
ing the gradient of PE(w) may require extensive compu-
tation and, therefore, a gradient-based algorithm may not
be computationally efficient. Furthermore, the choice of the
initial weight value can significantly affect the convergence
speed and the quality of the final solution obtained.

IV. DIFFERENTIAL EVOLUTION ALGORITHM

As a relatively new member in the family of evolutionary
algorithms, the DE algorithm has its distinctive feature in
that it mutates candidate-solution vectors by adding weighted
random difference-vector to them, which makes it more
powerful and efficient in arriving at the globally optimal
solution. A typical DE algorithm [13]–[16] is characterised
with its initialisation, mutation, re-combination and selection
operations invoked for exploring the search space in an
iterative procedure, until some termination criteria are met.
We employ the DE algorithm, as illustrated in Fig. 1, to find
an MBER solution of the optimisation problem defined in
(27). The algorithm is detailed as follows.
1) Initialization. DE algorithm commences its search from
a population of Ps L-dimensional complex-valued solution
vectors. The ps-th vector of the population in the first
generation of g = 1 may be readily expressed as

ŵ1,ps = [ŵ1,ps,1 ŵ1,ps,2 · · · ŵ1,ps,L]T , (28)

where L is the number of antenna elements. The initial
population {ŵ1,ps}Psps=1 is randomly generated within the
search space, and one of the initial candidate-solution vectors
may be set to the MMSE solution given in (9).
2) Mutation. The mutation operation allows DE to maintain
the diversity of the population, while insightfully steering the
optimisation. The appropriate choice of the mutation parame-
ters allows DE to prevent “premature convergence” to a local
minimum without thoroughly exploring the entire solution
space. Mutation is one of the distinctive features of the DE
algorithm, which does not use a predefined probability den-
sity function for generating the perturbed solutions. Instead,
it relies upon the population itself in perturbing the candidate
solutions by adding an appropriately scaled and randomly
selected difference-vector to a base population vector. More
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ûg,1,L

v̂g,1,L

randL(0, 1) ≤ Cr

PE(v̂g,Ps)

NO, g = g + 1
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ŵg,ps , otherwise

Termination: g > Gmax or PE(ŵg,best) = PE(ŵg+∆gmax,best)
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Fig. 1. Flowchart of the differential evolution algorithm for solving the MBER beamforming design.

specifically, a mutant vector is created by combining three
different, randomly chosen vectors according to

v̂g,i = ŵg,r1 + γ (ŵg,r2 − ŵg,r3) , (29)

where γ ∈ (0, 1] is a real positive number that controls the
rate at which the population evolves. A larger value of γ
results in a higher diversity in the population, while a lower
value promotes faster convergence.
3) Crossover. The crossover generates a trial vector by

replacing certain parameters of the target vector with the
corresponding parameters of a randomly selected donor vec-
tor. As a significant complementarity to the above-mentioned
differential mutation, the crossover operation increases the
potential diversity of the population vectors. There exist
diverse crossover mechanisms [13]–[16]. We opted for em-
ploying the uniform crossover algorithm, where each param-
eter, regardless of its location in the trial vector, has the
same probability of inheriting its value from a given vector.



More specifically, the l-th element of the i-th vector in the
population at the g-th generation, namely, ûg,i,l, is given by

ûg,i,l =
{
v̂g,i,l, randl(0, 1) ≤ Cr or l = lrand,
ŵg,i,l, otherwise, (30)

where Cr ∈ [0, 1] is the crossover probability, which rep-
resents the specific weight applied to the parameter values
that are copied from a previous vector to the mutant, and
randl(0, 1) denotes a random number uniformly distributed
in the range [0, 1), while lrand is a randomly and uniformly
drawn integer from the integer set {1, 2, · · · , L}. Note that
the crossover is guaranteed at least at one element, i.e. ûg,i
differs from ŵg,i at least at the (random) position l = lrand.
4) Selection. The selection operator determines whether
the target vector ŵg,ps or the trial vector ûg,ps survives
to the next generation. Unlike the GA, the DE algorithm
does not use fitness-based selection for the next generation.
Instead, the cost function (CF) of the trial vector ûg,ps ,
namely, PE(ûg,ps), is compared to that of ŵg,ps . If the trial
vector has lower or equal CF value in comparison to the
corresponding target vector, the trial vector replaces the target
vector to proceed to the next generation. Otherwise, the target
vector remains in the population for the next generation.
Specifically, the selection procedure is described by

ŵg+1,ps =
{

ûg,ps , PE(ûg,ps) ≤ PE(ŵg,ps),
ŵg,ps , otherwise. (31)

The selection operation also maintains a constant population
size Ps over all generations.

Once the new population is created, the above-mentioned
three processes, the mutation, crossover and selection, are
repeated, until the termination criterion described below is
met.
5) Termination. The ultimate stopping criterion would be
that the optimal MBER solution has indeed been found.
However, it is impossible in practice to glean any proof
of evidence to confirm this. Therefore, we opt to halt the
optimisation procedure, when any of the following two
stopping criteria are satisfied:
• The pre-defined maximum affordable number of gener-

ations Gmax has been exhausted.
• ∆gmax generations have been explored without a trial

vector being accepted.

V. SIMULATION STUDY

The simulated beamforming systems consisted of four
16-QAM user sources with a four-element linear uniform
antenna array, which represents a full-rank system of L ≥M ,
and a three-element linear uniform antenna array, which
renders the system into a rank-deficient one of L < M .
Conventional beamforming receiver based on the MMSE
design of (9) requires the system to be full rank. Previous
study [23] has demonstrated that the MSER design signif-
icantly outperforms the MMSE solution, particularly in the
rank-deficient case. The locations of the desired user and
the interfering users were graphically illustrated in Fig. 2.
All the four users were assumed to have an equal transmit

Interferer 3
Interferer 2

Interferer 4
Source 1 (Desired user)

λ
2

λ
2

λ
2

65◦

−θ

−70◦

Fig. 2. Locations of the four 16-QAM users with respective to the
four-element receive antenna array having λ/2 element spacing, where λ
represents the wavelength and θ denotes the minimum angular separation.

power, and the four channel taps, Ai for 1 ≤ i ≤ 4,
were identical. The interfering user 4 was assumed to be
the “heaviest” interferer, which had the minimum angular
separation with the desired user, that is, θ < 65◦. The three
basic algorithmic parameters of the DE algorithm, namely,
the population size, the scaling factor and the crossover
probability were empirically set to Ps = 100, γ = 0.4 and
Cr = 0.4, respectively. The maximum affordable number of
generations was set to Gmax = 200. In our simulation, the
perfect channel knowledge was assumed at the receiver. The
proposed MBER beamforming receiver was compared with
the classical MMSE beamforming receiver (9) as well as the
MSER beamforming receiver of [23]. It is expected that the
MBER and MSER beamforming solutions should achieve the
same performance in terms of BER.

Specifically, the BER performance of the MBER-based
beamforming for the full-rank scenario was shown in Fig. 3,
in comparison with those of the MSER-based beamforming
and MMSE-based beamforming. As expected, the MBER
beamforming had the same BER performance as the MSER
beamforming, and they outperformed the MMSE beamform-
ing with about 2 dB, 2.5 dB and 3.5 dB when the minimum
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Fig. 3. BER comparison of the three beamforming designs for the full-
rank scenario with the minimum separation angular θ = 40◦, 30◦ and 20◦,
respectively.
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Fig. 4. BER comparison of the three beamforming designs for the rank-
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20◦, respectively.

separation angular θ = 40◦, 30◦ and 20◦, respectively.
For the challenging rank-deficient scenario of using three-

element receive antenna array to support the four 16-QAM
users, the BER performance comparison of the three beam-
forming solutions is depicted in Fig. 4, where it can be
seen again that the MBER and MSER solutions attained the
same performance which was significantly better than the
performance achievable by the MMSE solution.

VI. CONCLUSIONS

We have proposed an DE assisted MBER beamforming
receiver for multi-user SDMA based QAM systems. The
BER formula has been derived explicitly, and the optimal
MBER solution has been obtained by minimising the BER
cost function using an DE algorithm. Simulation results have
demonstrated the effectiveness of the DE assisted MBER-
based beamforming receiver. As expected, the results ob-
tained have confirmed that the MBER beamforming receiver
attains the same BER performance as the MSER beamform-
ing receiver, and the both solutions significantly outperform
the standard MMSE-based beamforming receiver, regardless
of the full-rank and rank-deficient scenarios.

This study has demonstrated the effectiveness of the DE
algorithm as a design tool for communication signal pro-
cessing applications. Our further work will compare a range
of evolutionary computational intelligence methods, includ-
ing the GA, ACO, PSA and DE algorithm, in benchmark
communication system design problems.
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