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ABSTRACT

This contribution investigates a space-time equalisation as-
sisted multiuser detection scheme designed for multiple re-
ceiver antenna aided space division multiple access (SDMA)
systems. A novel minimum bit error ratio (MBER) design is
invoked for the multiuser detector (MUD), which is shown
to be capable of improving the attainable performance and
enhancing system capacity in comparison to that of the
standard minimum mean square error (MMSE) design. The
adaptive MUD coefficient adjustment procedure of the MBER
space-time MUD is implemented using a stochastic gradient
based least bit error rate (LBER) algorithm, which consistently
outperforms the classic least mean square (LMS) algorithm,
while maintaining a lower computational complexity than the
latter.

I. INTRODUCTION

In an effort to further increase the achievable system capacity,
antenna arrays can be employed for supporting multiple users in a
space division multiple access (SDMA) communications scenario
[1]-[4]. We investigate a space-time equalisation (STE) assisted
multiuser detector (MUD) scheme designed for multiple receiver
antenna aided SDMA systems. To gain insight into the multiuser
supporting capability of such an SDMA system, it is useful to draw
some comparisons with CDMA multiuser systems. In a CDMA
system each user is identified by a unique user-specific spreading
code. By contrast, an SDMA system differentiates each user by
the associated unique user-specific channel impulse response (CIR)
encountered at the receiver antenna. In a simplistic but conceptu-
ally appealing interpretation, one may argue that the unique user-
specific CIR plays the role of a user-specific CDMA signature.
In this analogy the CIR-signatures are not orthogonal to each
other, but this is not a serious limitation, because even orthogonal
spreading codes become non-orthogonal upon convolution by the
CIR. However, owing to the non-orthogonal nature of the CIRs,
an effecient multiuser receiver is required for separating the users
in an SDMA system.

The most popular SDMA-receiver design is constituted by the
minimum mean square error (MMSE) MUD [3]-[6]. However,
as recognised in [7] in a CDMA context, a better strategy is
to choose the detector’s coefficients so as to directly minimise
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the system’s bit error ratio (BER), rather than the mean square
error (MSE). We derive the minimum BER (MBER) solution for
the STE assisted MUD. It is shown that the MBER design is
more intelligent in utilizing the system’s resourcea, resulting in an
enhanced performance in comparison to the standard MMSE de-
sign. Additionally, an adaptive MBER MUD coefficient adjustment
algorithm is also considered based on a stochastic gradient learning
algorithm referred to as the least bit error rate (LBER) procedure.
It is demonstrated that this adaptive MBER MUD consistently
outperforms the least mean square (LMS) design based MUD and
yet it has a lower computational complexity than the latter. A range
of simulation results are also provided in support of our theoretical
analysis.

II. SYSTEM MODEL

Consider a multiple antenna aided SDMA system supporting M
active users, as depicted in Fig. 1, where each of the M users is
equipped with a single transmit antenna and the BS’s receiver is
assisted by an L-element antenna array. The symbol-rate received
signal samples xl(k) for 1 ≤ l ≤ L are given by

xl(k) =

M
∑

m=1

nC−1
∑

i=0

ci,l,msm(k−i)+nl(k) = x̄l(k)+nl(k), (1)

where nl(k) is a complex-valued Gaussian white noise process
associated with E[|nl(k)|2] = 2σ2

n, x̄l(k) denotes the noise-free
part of the lth receiver antenna’s output, sm(k) is the kth symbol
of user m, while ci,l,m represents the CIR taps associated with
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Fig. 1. Schematic of an antenna array aided SDMA uplink scenario,
where each of the M users is equipped with a single transmit antenna and
the base station’s receiver is assisted by an L-element antenna array.
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Fig. 2. Space-time equaliser assisted multiuser detector structure, where
∆ denotes the symbol-spaced delay.

user m and the lth receiver antenna. For notational simplicity, we
assume that each of the ML channels has the same CIR length
of nC . We assume furthermore that BPSK modulation is used and
hence we have sm(k) ∈ {±1}. The bank of M STEs shown in
Fig. 2 constitutes the MUD. The soft outputs of the M detectors
are given by

ym(k) =

L
∑

l=1

nF −1
∑

i=0

w∗
i,l,mxl(k − i), (2)

for 1 ≤ m ≤ M , where wl,m = [w0,l,m · · ·wnF −1,l,m]T denotes
the mth detector’s weight vector associated with the lth receive
antenna. The M user detectors’ decisions are defined by

ŝm(k − d) = sgn (yRm(k)) , 1 ≤ m ≤ M, (3)

where ŝm(k) is the estimate of sm(k), while yRm(k) = <[ym(k)]
denotes the real part of ym(k) and sgn(•) is the sign function.
Again, for notational simplicity, we assume that each of the M
detectors has the same decision delay d and all the temporal
filters have the same order nF . Hence we have 0 ≤ d ≤
nF +nC−2. Let us define the variables wm = [wT

1,m · · ·wT
L,m]T ,

xl(k) = [xl(k) xl(k − 1) · · ·xl(k − nF + 1)]T and x(k) =
[xT

1 (k) · · ·xT
L(k)]T . Then the output of the mth detector can be

written as

ym(k) =

L
∑

l=1

w
H
l,mxl(k) = w

H
mx(k). (4)

The received signal vector x(k) is modeled by

x(k) = Cs(k) + n(k) = x̄(k) + n(k), (5)

where we have n(k) = [n1(k) · · ·nL(k)]T with nl(k) =
[nl(k) nl(k−1) · · ·nl(k−nF +1)]T , s(k) = [sT

1 (k) · · · sT
M (k)]T

with sm(k) = [sm(k) sm(k−1) · · · sm(k−nF −nC +2)]T , and

C =









C1,1 C1,2 · · · C1,M

C2,1 C2,2 · · · C2,M

...
... · · ·

...
CL,1 CL,2 · · · CL,M









(6)

with Cl,m being the nF × (nF + nC − 1)-dimensional CIR
convolution matrix associated with user m and the lth receiver
antenna. Note that the output of the mth detector can be expressed
as:

ym(k) = w
H
m(x̄(k) + n(k)) = ȳm(k) + em(k), (7)

where em(k) is Gaussian distributed, having a zero mean and
E[|em(k)|2] = 2wH

mwmσ2
n. Classically, the mth detector’s weight

vector wm is given by the following MMSE solution

w(MMSE)m =
(

CC
H + 2σ2

nI
)−1

C|(m−1)(nF +nC−1)+(d+1),
(8)

for 1 ≤ m ≤ M , where I denotes the (LnF ×LnF )-dimensional
identity matrix and C|i the ith column of C. An adaptive MUD
coefficient adjustment algorithms designed for the implementation
of the MMSE solution can be realized using the LMS algorithm.

III. MINIMUM BIT ERROR RATE MULTIUSER DETECTION

Let us denote the Ns = 2M(nF +nC−1) number of possible
transmitted symbol sequences of s(k) as s

(q), 1 ≤ q ≤ Ns. Denote
furthermore the ((m−1)(nF +nC−1)+(d+1))th element of s

(q),
corresponding to the symbol sm(k − d), as s

(q)
m,d. The noise-free

part of the mth detector input signal x̄(k) assumes values from the

signal set defined as: Xm
4
= {x̄(q) = Cs

(q), 1 ≤ q ≤ Ns}. This
set can be partitioned into two subsets, depending on the value of

sm(k−d), as follows: X (±)
m

4
= {x̄(q,±) ∈ Xm : sm(k−d) = ±1}.

Similarly, the noise-free part of the mth detector’s output ȳm(k)
assumes values from the scalar set

Ym
4
= {ȳ(q)

m = w
H
mx̄

(q), 1 ≤ q ≤ Ns}. (9)

Thus ȳRm(k) = <[ȳm(k)] can only take the values from the set

YRm

4
= {ȳ(q)

Rm
= <[ȳ(q)

m ], 1 ≤ q ≤ Ns}, (10)

and YRm can be divided into the two subsets conditioned on the
value of sm(k − d):

Y(±)
Rm

4
= {ȳ(q,±)

Rm
∈ YRm : sm(k − d) = ±1}. (11)

It is readily seen that the conditional probability density function
(PDF) of yRm(k) given sm(k − d) = +1 is:

pm(yR|+1) =
1

Nsb

Nsb
∑

q=1

1
√

2πσ2
nwH

mwm

e
−

(

yR−ȳ
(q,+)

Rm

)2

2σ2
nw

H
mwm , (12)

where ȳ
(q,+)
Rm

∈ Y(+)
Rm

and Nsb = Ns/2 is the number of the points

in the set Y(+)
Rm

. Thus the BER of the mth detector associated with
the detector’s weight vector wm is given by:

PE(wm) =
1

Nsb

Nsb
∑

q=1

Q
(

g(q,+)(wm)
)

, (13)

where

Q(u) =
1√
2π

∫ ∞

u

e−
v2

2 d v (14)

and

g(q,+)(wm) =
sgn(s

(q)
m,d)ȳ

(q,+)
Rm

σn

√

wH
mwm

. (15)



Note that the BER is invariant to a positive scaling of wm.
Similarly, the BER may be calculated based on the other subset,
namely on Y(−)

Rm
.

The MBER solution for the mth detector is then defined as the
weight vector that minimizes the error probability (13), namely

w(MBER)m = arg min
wm

PE(wm). (16)

The gradient of PE(wm) with respect to wm is given by:

∇PE(wm) =
1

2Nsb

√
2πσn

√

wH
mwm

Nsb
∑

q=1

e
−

(

ȳ
(q,+)

Rm

)2

2σ2
nw

H
mwm

×sgn
(

s
(q)
m,d

)

(

ȳ
(q,+)
Rm

wm

wH
mwm

− x̄
(q,+)

)

. (17)

Given the gradient expression (17), the optimization problem (16)
can be solved iteratively by commencing the iterations from an
appropriate initialization point, such as the MMSE solution, using
a gradient-based optimization algorithm. The simplified conjugate
gradient algorithm [7] provides an efficient means of finding an
MBER solution for the optimization problem formulated in (16).

IV. ADAPTIVE MBER MULTIUSER DETECTION

The PDF of yRm(k) can be shown to be explicitly given by:

pm(yR) =
1

Ns

√
2πσn

√

wH
mwm

Ns
∑

q=1

e
−

(

yR−ȳ
(q)

Rm

)2

2σ2
nw

H
mwm , (18)

and the BER of the mth detector can be calculated according to:

PE(wm) =
1

Ns

Ns
∑

q=1

Q
(

g(q)(wm)
)

(19)

with

g(q)(wm) =
sgn(s

(q)
m,d)ȳ

(q)
Rm

σn

√

wH
mwm

, (20)

where the summation is carried out over the Ns number of
elements ȳ

(q)
Rm

∈ YRm . In reality, the PDF of yRm(k) is unknown.
Therefore, some form of PDF estimation is required for supporting
the adaptive implementation of the MBER MUD.

Given a block of K training samples {x(k), sm(k − d)}K
k=1, a

Parzen window estimate [8]-[10] of the PDF in (18) is given by:

p̃m(yR) =
1

K
√

2πρn

K
∑

k=1

e
−

(yR−yRm
(k))2

2ρ2
n , (21)

and the resultant approximate BER formula becomes

P̃E(wm) =
1

K

K
∑

k=1

Q (g̃k(wm)) , (22)

where we have

g̃k(wm) =
sgn(sm(k − d))yRm(k)

ρn

(23)
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Fig. 3. Bit error rate comparison of the the MMSE and MBER multiuser
detectors for the 3-user 4-antenna time-invariant system.

and ρn is the chosen kernel width. This approximation is an
adequate one, provided that the width ρn is chosen appropriately.

In order to derive a sample-by-sample adaptive MUD coefficient
adjustment algorithm for updating wm, consider a single-sample
estimate of pm(yR), namely:

p̃m(yR, k) =
1√

2πρn

e
−

(yR−yRm
(k))2

2ρ2
n . (24)

Conceptually, from this single-sample PDF “estimate”, we have a
one-sample or instantaneous BER “estimate” P̃E(wm, k). Using
the instantaneous stochastic gradient formula of:

∇P̃E(wm, k) = − sgn(sm(k − d))

2
√

2πρn

e
−

y2
Rm

(k)

2ρ2
n x(k) (25)

gives rise to the LBER MUD coefficient adjustment algorithm of:

wm(k +1) = wm(k)+µ
sgn(sm(k − d))

2
√

2πρn

e
−

y2
Rm

(k)

2ρ2
n x(k). (26)

The adaptive gain µ and kernel width ρn have to be set appropri-
ately to ensure adequate performance in terms of the achievable
convergence rate and steady-state BER misadjustment. It can be
shown that for the BPSK modulation scheme considered the LBER
algorithm is simpler than the LMS algorithm. If the modulation
scheme is QPSK, both algorithms have a similar complexity. For
higher-order modulation schemes, the LBER algorithm is slightly
more complex than the LMS technique.

V. SIMULATION STUDY

Time-invariant system. The system used in our simulations
supported M = 3 users with the aid of L = 4 receiver antennas.
All the three users had an equal power. The 3 · 4 = 12 CIRs are
listed in Table I, each having nC = 2 taps. In the actual simulation,
all the 12 CIRs were normalized to provide unit channel energy.
Each temporal filter had a length of nF = 3 and the detector’s



decision delay was chosen to be d = 1. For the set of simulated
CIRs Fig. 3 compares the BER performance of the MMSE and
MBER MUDs. It can be seen that for all three users the MBER
detectors had a better BER performance than the corresponding
MMSE detectors. For the specific simulated channel conditions,
the performance gap between the MBER and MMSE detectors
was the smallest for user 3, exhibiting an approximately 1.5 dB
SNR gain at the BER level of 10−4. At this BER level the MBER
detector of user 2 had the SNR largest performance gain over the
corresponding MMSE detector, which was in excess of 6.5 dB.

The MMSE and MBER solutions choose the detector’s weight
vector very differently. Fig. 4 plots the full conditional PDFs
pm(y| + 1), marginal conditional PDFs pm(yR| + 1), and the
corresponding signal subsets Y (+)

m and Y(+)
Rm

for user 2 at SNR=
2 dB. Since the MMSE detector minimises the MSE term of
E[|sm(k − d) − ym(k)|2], the signal subset Y(+)

m has to be
distributed symmetrically with respect to both <[y] and =[y], and
the associated conditional PDF pm(y| + 1) has to be circular.
However, the BER of the detector is mainly determined by the
minimum distance of the subset Y (+)

Rm
from the decision threshold

<[y] = 0. By contrast, the MBER detector is not constrained
by the symmetric and circular considerations, it spreads Y (+)

m

significantly wider along =[y] and this leads to a significantly
higher MSE value. However, this also doubles the minimum
distance between Y(+)

Rm
and <[y] = 0, resulting in a substantially

lower BER, compared to the MMSE solution. Clearly, the MBER
design is more intelligent in utilising the detector’s resources.

The LMS and LBER MUDs were next investigated for user 2 at
SNR= 2 dB. Fig. 5 depicts the learning curves of the two adaptive
detectors, averaged over 20 runs and started from two different
initial conditions wm(0). In these investigations the adaptive MUD
operated in two different modes, namely using pilot-based training,
when the transmitted symbols sm(k − d) were known to the
receiver and decision-directed (DD) adaptation, when the detected
symbols ŝm(k − d) were used to substitute sm(k − d). It can
be seen that the LBER MUD consistently outperformed the LMS
MUD. Furthermore, the LBER MUD was capable of taking the full
advantage of DD adaptation, as demonstrated in Fig. 5 (b), where
it can also be seen that the DD LMS MUD failed to converge to
the MMSE solution.

Fading system. The system setup and the structure of the MUDs
were the same as in the time-invariant CIR-based example, but
fading channels were simulated. The transmission frame structure
consisted of 20 training symbols followed by 200 data symbols.
The magnitudes of the CIR taps were i.i.d. Rayleigh processes,
each having the root mean power of

√
0.5 + j

√
0.5. Idealistic

fading conditions were simulated, where the CIR taps were sub-
jected to frame-invariant fading. Hence the CIR taps were faded at
the beginning of each transmission frame at a normalized Doppler
frequency of 10−5, generating different channel magnitudes and
phases for different frames, but they were kept constant within the
transmission frame. Fig. 6 compares the bit error rate achieved by
the LMS and LBER MUDs of user 1. The performance of the
MUDs for the other two users were similar to those shown in
Fig. 6.
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(dots) of the user-2 detector for the 3-user
4-antenna time-invariant system at SNR= 2 dB. The detector’s weight
vector is normalized to a unit-length.

VI. CONCLUSIONS

A novel minimum bit error rate design has been proposed for a
space-time equalisation assisted multiuser detector employed in
multiple antenna aided space division multiple access systems.
It has been demonstrated that this MBER design is capable of
achieving a better BER performance and hence of enhancing the
achievable system capacity, compared to the standard minimum
mean square error design. An adaptive implementation of the
MBER space-time MUD has also been derived based on the least
bit error rate algorithm, which was shown to consistently outper-
form the classic least mean square algorithm, while maintaining a
lower computational complexity in comparison to the latter.



TABLE I
CIRS FOR THE 3-USER 4-ANTENNA TIME-INVARIANT SYSTEM. THE ACTUALLY SIMULATED CIRS WERE Cl,m(z)/|Cl,m(z)| TO PROVIDE UNIT

CHANNEL ENERGY.

Cl,m(z) m = 1 m = 2 m = 3
l = 1 (0.5 + j0.6) + (0.8 − j0.7)z−1 (1.0 + j0.8) + (0.7 + j0.4)z−1 (0.6 − j0.8) + (−0.5 + j0.3)z−1

l = 2 (0.7 + j1.0) + (0.2 + j0.5)z−1 (0.4 + j0.4) + (0.6 + j0.6)z−1 (−0.5 + j0.3) + (0.9 + j0.2)z−1

l = 3 (−0.5 + j0.7) + (−0.6 + j0.7)z−1 (−0.3 − j0.6) + (0.5 − j0.7)z−1 (0.7 + j0.8) + (−0.2 − j0.3)z−1

l = 4 (0.3 − j0.6) + (0.5 − j0.2)z−1 (0.8 − j0.5) + (0.6 + j0.2)z−1 (0.2 + j0.1) + (0.9 + j0.2)z−1
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