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ABSTRACT

In this contribution we propose a space-time decision

feedback equalization (ST-DFE) assisted multiuser detection

(MUD) scheme for multiple antenna aided space division mul-

tiple access systems. A minimum bit error rate (MBER) design

is invoked for the MUD, which is shown to be capable of im-

proving the achievable bit error rate performance over that of

the minimum mean square error (MMSE) design. An adap-

tive MBER ST-DFE-MUD is proposed using the least bit error

rate algorithm, which is demonstrated to consistently outper-

form the least mean square (LMS) algorithm, while achieving

a lower computational complexity than the LMS algorithm for

the binary signalling scheme. Simulation results demonstrate

that the MBER ST-DFE-MUD is more robust to channel estima-

tion errors as well as to error propagation imposed by decision

feedback errors, compared to the MMSE ST-DFE-MUD.

I. INTRODUCTION

In an effort to further increase the achievable system capac-

ity, antenna arrays can be employed for supporting multiple users

in a space division multiple access (SDMA) communications sce-

nario [1]-[10]. We investigate a space-time (ST) decision feedback

equalization (DFE) assisted multiuser detection (MUD) scheme

for multiple receiver antenna aided SDMA systems. To interpret

the multiuser-supporting capability of such a novel SDMA system

[11], it is useful to relate it to classic code division multiple access

(CDMA) multiuser systems [9]. In a CDMA system, each user is

separated by a unique user-specific spreading code. By contrast,

an SDMA system differentiates each user by the associated unique

user-specific channel impulse response (CIR) encountered at the re-

ceiver antennas. In this analogy, the unique user-specific CIR plays

the role of a user-specific CDMA signature. However, owing to the

non-orthogonal nature of the CIRs, an effective MUD is required

for separating the users in an SDMA system.

The most popular SDMA-receiver design is constituted by the

minimum mean square error (MMSE) MUD [5],[8]-[12]. How-

ever, as recognized by [13] in a CDMA context and by [14] in

an adaptive beamforming-based MUD scenario, a better strategy

is to choose the detector’s coefficients by directly minimizing the

system’s bit error ratio (BER). For the single-user single-antenna

system, the minimum BER (MBER) equalization design has been

proposed [15]-[18]. This paper studies the MBER ST-DFE-MUD

in the context of SDMA and derives an adaptive MBER ST-DFE-

MUD based on the least bit error rate (LBER) algorithm. It is shown

that the MBER ST-DFE-MUD design results in an enhanced BER
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performance in comparison to the MMSE design. Moreover, unlike

the MMSE design whose performance degrades significantly owing

to decision feedback errors in the presence of multi-user feedback

loops, the MBER ST-DFE-MUD is very robust to the error propa-

gation. The MBER ST-DFE-MUD is also shown to be more robust

to channel estimation errors than the MMSE design. It is demon-

strated that the LBER ST-DFE-MUD consistently outperforms the

least mean square (LMS) based ST-DFE-MUD and yet it has a

lower computational complexity than the latter in the case of the

binary phase shift keying (BPSK) modulation scheme.

II. SYSTEM MODEL

Consider the multiple antenna aided SDMA system supporting

M users, where each of the M users is equipped with a single trans-

mit antenna and the receiver is assisted by an L-element antenna ar-

ray. The symbol-rate received signal samples xl(k) for 1 ≤ l ≤ L
are given by

xl(k) =

M
∑

m=1

nC−1
∑

i=0

ci,l,msm(k−i)+nl(k) = x̄l(k)+nl(k), (1)

where nl(k) is a complex-valued Gaussian white noise process with

E[|nl(k)|2] = 2σ2
n, x̄l(k) denotes the noise-free part of the lth

receive antenna’s output, sm(k) is the kth transmitted symbol of

user m, and cl,m = [c0,l,m c1,l,m · · · cnC−1,l,m]T denotes the tap

vector of the CIR connecting the user m and the lth receive antenna.

For notational simplicity, we have assumed that each of the (M×L)

CIRs has the same length of nC . We assume furthermore that BPSK

modulation is employed and hence we have sm(k) ∈ {±1}.

A bank of the M ST-DFEs constitutes the MUD, and the soft

outputs of the M ST-DFEs are given by

ym(k) =

L
∑

l=1

nF −1
∑

i=0

w∗

i,l,mxl(k−i)+

M
∑

q=1

nB
∑

i=1

b∗i,q,mŝq(k−d−i),

(2)

for 1 ≤ m ≤ M , where ŝm(k) denotes the estimate of sm(k),

wl,m = [w0,l,m w1,l,m · · ·wnF −1,l,m]T denotes the feedforward

filter weight vector of the mth user’s detector associated with the

lth receive antenna, while bq,m = [b1,q,m b2,q,m · · · bnB ,q,m]T de-

notes the mth user’s detector feedback filter weight vector associ-

ated with the qth user detector’s feedback. Again, for notational

simplicity, we have assumed that each of the M ST-DFEs has the

same decision delay d, all the feedforward filters have the same or-

der nF , and all the feedback filters have the same order nB . The M
detectors’ decisions are defined by

ŝm(k − d) = sgn (yRm(k)) , 1 ≤ m ≤ M, (3)

where yRm(k) = ℜ[ym(k)]. Define xl(k) = [xl(k) xl(k −
1) · · ·xl(k − nF + 1)]T , ŝBq (k) = [ŝq(k − d − 1) · · · ŝq(k −
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d − nB)]T , wm =
[

w
T
1,m w

T
2,m · · ·wT

L,m

]T
, x(k) =

[

x
T
1 (k) x

T
2 (k) · · ·xT

L(k)
]T

, bm =
[

b
T
1,m b

T
2,m · · ·bT

M,m

]T
, and

ŝB(k) =
[

ŝ
T
B1

(k) ŝ
T
B2

(k) · · · ŝT
BM

(k)
]T

. Then the output of the

mth ST-DFE can be written as

ym(k) =

L
∑

l=1

w
H
l,mxl(k) +

M
∑

q=1

b
H
q,mŝBq (k)

= w
H
mx(k) + b

H
mŝB(k). (4)

We will choose the ST-DFE structure’s parameters as follows:

d = nC − 1, nF = nC and nB = nC − 1. This choice of the

DFE structure’s parameters is sufficient for guaranteeing that the

two classes of noise-free signal states are always linearly separable

at the detector’s output and therefore they guarantee an adequate

performance [15]. With nF = nC and d = nB = nC − 1, let us

introduce the two overall CIR matrices as

CF =









CF1

CF2

...

CFL









and CB =









CB1

CB2

...

CBL









, (5)

where CFl
and CBl

are given by

CFl
=

[

CFl,1 CFl,2 · · · CFl,M

]

(6)

and

CBl
=

[

CBl,1 CBl,2 · · · CBl,M

]

, (7)

respectively, with the nF × (d + 1) and nF ×nB dimensional CIR

matrices CFl,m
and CBl,m

defined by

CFl,m
=











c0,l,m c1,l,m · · · cnC−1,l,m

0 c0,l,m

. . .
...

...
. . .

. . . c1,l,m

0 · · · 0 c0,l,m











(8)

and

CBl,m
=











0 · · · 0

cnC−1,l,m

. . .
...

...
. . . 0

c1,l,m · · · cnC−1,l,m











, (9)

respectively. Let us define furthermore sF (k) = [sT
F1

(k) s
T
F2

(k) · · ·
s

T
FM

(k)]T , sB(k) = [sT
B1

(k) s
T
B2

(k) · · · sT
BM

(k)]T and n(k) =

[n1(k) n2(k) · · ·nL(k)]T , where sFm(k) = [sm(k) sm(k −
1) · · · sm(k − d)]T , sBm(k) = [sm(k − d − 1) sm(k − d −
2) · · · sm(k−d−nB)]T and nl(k) = [nl(k) nl(k− 1) · · ·nl(k−
nF + 1)]T . Then the received signal vector x(k) is modeled as

x(k) = CF sF (k) + CBsB(k) + n(k). (10)

Under the assumption that the past decisions are correct, we have

ŝB(k) = sB(k) and the received signal vector can be expressed as

x(k) = CF sF (k)+CB ŝB(k)+n(k). Thus, the decision feedback

can be viewed as a translation of the original observation space x(k)
into a new space r(k) [15]

r(k)
△

= x(k) − CB ŝB(k) = CF sF (k) + n(k)

= r̄(k) + n(k). (11)

In the translated space r(k), the original ST-DFE described by (4)

is “translated” into a ST “linear equalizer” described as

ym(k) = w
H
mr(k) = w

H
m(r̄(k)+n(k)) = ȳm(k)+em(k), (12)

where em(k) is Gaussian distributed, having a zero mean and

E[|em(k)|2] = 2wH
mwmσ2

n. Note that we have r(k) =
[rT

1 (k) r
T
2 (k) · · · rT

L(k)]T with rl(k) = [rl(k) rl(k−1) · · · rl(k−
nF + 1)]T . The elements of rl(k) can be computed recursively

according to [15]

rl(k − i) = z−1rl(k − i + 1) −
M

∑

m=1

cnC−i,l,mŝm(k − d − 1),

for i = nF − 1, nF − 2, · · · , 1, (13)

rl(k) = xl(k),

where z−1 defines the unit delay operator. The detector structure

of (12) with the space translation (13) is exactly the same as the

original DFE structure (4). The feedback coefficient vector bm does

not simply “disappear”. It has in fact been set to its “optimal value”,

which is bm = −C
H
B wm.

III. MINIMUM BIT ERROR RATE MULTIUSER DETECTION

Let us denote the Ns = 2M(d+1) number of possible sequences

of sF (k) as s
(q), 1 ≤ q ≤ Ns. Denote furthermore the m(d + 1)th

element of s
(q), corresponding to the symbol sm(k − d), as s

(q)
m,d.

The noise-free part of the mth detector input signal r̄(k) assumes

values from the signal set defined as Rm
△

= {r̄(q) = CF s
(q), 1 ≤

q ≤ Ns}. Similarly, the noise-free part of the mth detector’s output

ȳRm(k) = ℜ[ȳm(k)] assumes values from the scalar set

YRm

△

= {ȳ(q)
Rm

= ℜ[wH
mr̄

(q)], 1 ≤ q ≤ Ns}. (14)

The probability density function (PDF) of yRm(k) is a Gaussian

mixture given by [13],[14]

pm(yR) =
1

Ns

√
2πσn

√

wH
mwm

Ns
∑

q=1

e
−

(

yR−ȳ
(q)

Rm

)2

2σ2
nw

H
mwm , (15)

where ȳ
(q)
Rm

∈ YRm . Thus the BER of the mth ST-DFE associated

with weight vector wm is given by

PE(wm) =
1

Ns

Ns
∑

q=1

Q
(

g
(q)
R (wm)

)

, (16)

where Q(•) is the usual error Q-function and

g
(q)
R (wm) =

sgn(s
(q)
m,d)ȳ

(q)
Rm

σn

√

wH
mwm

=
sgn(s

(q)
m,d)ℜ[wH

mr̄
(q)]

σn

√

wH
mwm

. (17)
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Fig. 1. Theoretical and simulated bit error rate comparison of the MMSE and MBER ST-DFE-MUDs for users 1 to 4 of the 4-user 4-antenna time-invariant system, where DF

indicates simulated BER with detected symbols being fed back.

TABLE I

SYSTEM’S CIRS FOR A 4-ANTENNA 4-USER TIME-INVARIANT SDMA SYSTEM.

Cl,m(z) m = 1 m = 2 m = 3 m = 4

l = 1 (0.6 + j0.7) (−0.1 − j0.2) (0.7 + j0.5) (0.8 − j0.4)

+(0.8 + j0.5)z−1 +(0.4 + j0.5)z−1 +(0.6 + j0.4)z−1 +(−0.6 + j0.5)z−1

+(0.3 + j0.4)z−2 +(0.3 − j0.2)z−2 +(0.5 + j0.5)z−2 +(0.3 + j0.3)z−2

l = 2 (0.1 + j0.2) (0.9 + j0.2) (−0.3 − j0.3) (0.3 + j0.3)

+(0.4 + j0.3)z−1 +(0.3 + j0.7)z−1 +(0.4 + j0.2)z−1 +(0.4 + j0.4)z−1

+(0.5 + j0.4)z−2 +(0.2 + j0.2)z−2 +(−0.2 + j0.4)z−2 +(0.5 + j0.5)z−2

l = 3 (−0.1 + j0.3) (0.5 + j0.6) (0.2 − j0.3) (0.1 + j0.8)

+(0.6 − j0.5)z−1 +(−0.3 − j0.4)z−1 +(0.4 − j0.5)z−1 +(0.7 + j0.6)z−1

+(0.2 + j0.4)z−2 +(0.2 + j0.4)z−2 +(0.6 + j0.3)z−2 +(0.8 + j0.5)z−2

l = 4 (0.8 + j0.9) (0.4 + j0.4) (0.1 + j0.2) (0.4 + j0.6)

+(0.6 + j0.5)z−1 +(0.4 + j0.4)z−1 +(−0.3 − j0.4)z−1 +(0.5 + j0.3)z−1

+(0.5 + j0.3)z−2 +(0.4 + j0.4)z−2 +(0.3 + j0.2)z−2 +(0.2 + j0.3)z−2

Note that the BER is invariant to a positive scaling of wm.

The MBER solution for the mth detector is then defined as the

weight vector that minimizes the error probability (16)

w(MBER)m = arg min
wm

PE(wm). (18)

The gradient of PE(wm) with respect to wm is given by

∇PE(wm) =
1

2Ns

√
2πσn

√

wH
mwm

Ns
∑

q=1

e
−

(

ȳ
(q)

Rm

)2

2σ2
nw

H
mwm

×sgn
(

s
(q)
m,d

)

(

ȳ
(q)
Rm

wm

wH
mwm

− r̄
(q)

)

. (19)

Given the gradient (19), the optimization problem (18) can be

solved iteratively by commencing from an appropriate initialization

point using a gradient optimization algorithm. The simplified con-

jugate gradient algorithm of [19],[13] provides an efficient means

of finding an MBER solution for the optimization problem (18).

IV. ADAPTIVE MINIMUM BIT ERROR RATE IMPLEMENTATION

The Parzen window method [20]-[22] provides an efficient

means of estimating a PDF. Given a block of K training samples

{r(k), sm(k − d)}K
k=1, a Parzen window density estimate of the



PDF in (15) takes the form

p̃m(yR) =
1

K
√

2πρn

K
∑

k=1

e
−

(yR−yRm
(k))2

2ρ2
n , (20)

where ρ2
n is the chosen kernel variance. Based on the estimated

PDF (20), an approximate BER is given by

P̃E(wm) =
1

K

K
∑

k=1

Q
(

g̃
(k)
R (wm)

)

(21)

with

g̃
(k)
R (wm) =

sgn(sm(k − d))yRm(k)

ρn

. (22)

This approximation is an adequate one, provided that the width ρn

is chosen appropriately.

To derive a sample-by-sample adaptive algorithm for updating

the detector’s weight vector wm, consider a single-sample estimate

of pm(yR)

p̃m(yR, k) =
1√

2πρn

e
−

(yR−yRm
(k))2

2ρ2
n . (23)

Conceptually, from this single-sample PDF “estimate”, we have a

single-sample or instantaneous BER “estimate” P̃E(wm, k). Using

the instantaneous stochastic gradient ∇P̃E(wm, k) gives rise to a

stochastic gradient adaptive algorithm, which we referred to as the

LBER algorithm

wm(k + 1) = wm(k) + µ
sgn(sm(k − d))

2
√

2πρn

e
−

y2
Rm

(k)

2ρ2
n r(k). (24)

The adaptive gain µ as well as the kernel width ρn are the two al-

gorithmic parameters that have to be set appropriately. Specifically,

they are chosen to ensure adequate performance in terms of both

the achievable convergence rate and steady-state BER misadjust-

ment. Note that there is no need to normalize the weight vector to

a unit-length after each update. It can readily be shown that for the

BPSK case, the LBER ST-DFE is computationally simpler than the

LMS ST-DFE, imposing about half the computational complexity

required by the LMS algorithm [14].

V. SIMULATION STUDY

Time-invariant system. The system supported M = 4 users with

L = 4 receiver antennas. The 16 CIRs are listed in Table I, each

having nC = 3 taps. In the simulations all the 16 CIRs were

normalized using Cl,m(z)/|Cl,m(z)| to provide a channel gain of

unity. As the length of the CIRs was nC = 3, the ST-DFE struc-

ture was defined by nF = 3, d = 2 and nB = 2. The theoret-

ical BER curves of the MMSE and MBER ST-DFE-MUDs, com-

puted using the BER expression of (16), are plotted in Fig. 1 over

a range of signal to noise ratio (SNR) conditions. It can be seen

that the MBER ST-DFE-MUD provided better BER performance

than the MMSE ST-DFE-MUD. The BER calculated using the ex-

pression (16) represents the theoretical best-case performance, since

it was obtained assuming that the correct symbols were fed back

in the ST-DFE-MUD’s feedback loop. For the sake of investigat-

ing the effects of decision feedback induced error propagation, the

BERs of the MMSE and MBER ST-DFE-MUDs were also calcu-

lated using simulations with the error-prone detected symbols being

fed back, and the results are also depicted in Fig. 1, in comparison

to the corresponding theoretical best-case performance. It can be

seen that the MBER ST-DFE-MUD is significantly more robust to

error propagation than the MMSE ST-DFE-MUD. We also added

the Gaussian white noise with standard deviation 0.1 to each tap

of the CIRs to represent channel estimation errors. The theoreti-

cal BERs of the MMSE and MBER ST-DFE-MUDs obtained based

on the “estimated” CIRs and averaged over 10 “estimations” are

illustrated in Fig. 2, in comparison to the performance derived us-

ing perfect channel knowledge. It can be seen that the performance

degradation due to imperfect channel estimates is less serious for

the MBER ST-DFE-MUD than for the MMSE one.

Slow fading system. The system again supported 4 users with 4

receive antennas. However, fading channels were simulated and

each of the 16 CIRs had nC = 3 taps. Magnitudes of the CIR taps

were uncorrelated Rayleigh processes, each having the root mean

power of
√

0.5 + j
√

0.5. The normalized Doppler frequency for

the simulated system was 10−6, which for a carrier of 900 MHz

and a symbol rate of 3 Msymbols/s corresponded to a user veloc-

ity of 1 m/s (3.6 km/h). Continuously fluctuating fading was used,

which provided a different fading magnitude and phase for each

transmitted symbol. The ST-DFE structure parameters were set to

d = 2, nF = 3 and nB = 2. The step size for the LMS algorithm

was chosen as µ = 0.005, while for the LBER algorithm the step

size µ = 0.1 and kernel variance ρ2
n = 9σ2

n. The transmission

frame structure consisted of 50 training symbols followed by 450

data symbols. The BER of an adaptive ST-DFE-MUD was calcu-

lated using Monte Carlo simulation with the detected symbols been

fed back. Fig. 3 compares the BER of the LBER ST-DFE-MUD

for user 2 with that of the LMS based one. The BERs for the other

three users, not shown here due to space limitation, are similar to

the BER for user 2 shown in Fig. 3. It can be seen that the LBER

ST-DFE-MUD consistently outperformed the LMS ST-DFE-MUD.

VI. CONCLUSIONS

A novel minimum bit error rate design has been proposed for

the ST-DFE-MUD employed in multiple antenna aided SDMA sys-

tems. It has been demonstrated that this MBER design is capable

of achieving better performance and hence of improving the attain-

able system capacity, compared to the MMSE design. An adaptive

implementation of the MBER ST-DFE-MUD has also been derived

based on the LBER algorithm, which has been shown to consis-

tently outperform the LMS algorithm and yet maintaining a lower

computational complexity than the latter for BPSK modulation. An-

other interesting result observed in this study is that the MBER

ST-DFE-MUD is significantly more robust against the error prop-

agation caused by error-prone detected symbols used in the MUD’s

feedback loop, in comparison to the MMSE ST-DFE-MUD.
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