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Motivations

Space-time equalization : an effective means of suppressing both
ISI and CCI for frequency selective MIMO systems

Training based adaptation: simple but considerably reduces
achievable system throughput

Blind based adaptation: inherently high complexity and slow
convergence, also suffering from unavoidable estimation and
decision ambiguities

Semi-blind based adaptation: provide good performance
with high convergence speed and simple computation
complexity with minimum training overhead



Existing Works

Semi-blind stochastic-gradient(SG) based spatial equalizer
for stationary frequency nonselective MIMO

SG-based concurrent Constant Modulus Algorithm and Soft
Decision-Directed adaptation (SG-CMA+SDD)

high performance with minimum training

Semi-blind gradient-Newton(GN) based spatial equalizer for
stationary frequency selective MIMO

GN-based concurrent Constant Modulus Algorithm and Soft
Decision-Directed adaptation (GN-CMA+SDD)

high performance with minimum training

For time-varying MIMOs, no results has been produced



Contribution

We investigate tracking performance of semi-blind GN-
CMA+SDD STE operating in dispersive Rayleigh fading MIMOs
Continuously Training-based recursive least squares (RLS) STE
Offering a low bound of the system’s achievable performance

Impossible to realize

Tracking performance is close to the continuously training-
based RLS algorithm

Offering a practical way to adapt a STE in the hostile
dispersive fading MIMO environment



MIMO channels

Q users, P receive antennas, and channel impulse response (CIR)
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Space-time Equalizer (STE)

Received signal vector
x(k) = C(k)s(k) + n(k)
s(k) is the transmitted symbol vector s(k)=[sI (k) sj(k) - sg(k)]T

with user-g’s data s,(K) =[s,(k) s,(k-1) - s,(k-D-n.+2)], where D
is the temporal filter length

n(k) is the AWGN vector n(k)=|nl (k) ni(k) - niK)]
with n ()=, (k) n (k-1 - n Kk-D+1f
C(k) is overall system’s CIR matrix
qth STE output for detecting user-q’s data s (k-z,), where ¢, is

decision delay
Yo (K) =Wy (K)x(k)

gth STE weight vector W, (K)=|wl, (k) wl (k) - wi (]
with pth filterwp,q(k)=[w0,p,q(k) W, q(K) - WD_l,p,q(k)]T



Least Squares Estimate

K available training symbols, and available training data:
) X =[x@ x@ - x(K)]
Ska = [S,A—7y) S,(-7y) - s,@—z,)

Least Square (LS) estimate of STE’s weight vector

W, (0) = (X, X% " X Skq

To ensure full rank of X, X¢, K >N, the dimension of STE
NSTE =P-D

To maintain throughput, we choose minimum training length
K~ Ngre



Gradient-Newton Adaptation

SG adaptation suffers from slow convergence and high
steady-state misadjustment in highly correlated signal
environments

Similar to RLS, GN adaptation is effective in such hostile signal
environments, at cost of increased complexity

“Kalman” gain
2Pk —1)x(k)
g(k) = 0
1+ A% (K)P(k —)x(k)
Inverse “autocorrelation” matrix
P(k)=2"'P(k —1) — A *g(k)x" (K)P(k —1)

Forgetting factor 0< A <1, and initial p(0)=(x, X" )"



GN-CMA

Given initial LS estimate , split STE’s weight vector to two parts
W (K) =W, (K) +w, 4 (K)

with w_ (0) =w,,(0) =0.5w,(0)
Gradient-Newton constant modulus algorithm for w, (k)
Given A=Els,(K)I'I/Ells,(K)I'], error signal is
£() = y, (A -y, )
Given step size HUcua, Weight adaptation
W o (K+1) =w, (K)+ euaP(K)e™ (K)x(K)
If P(k) =1 == Stochastic-gradient CMA



SDD Scheme

For M-QAM, divide

complex plane into M/4 O 16QAM system point
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SDD: “maximize”

JLMAp(wq(k),k)=plog[ﬁ(wq(k,yq (k))j



GN-SDD

Gradient-Newton soft decision directed adaptation for w , (k)
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Simulation Setting

Q = 3 users with 16-QAM, and P = 4 receive antennas
Each of p.Q =12 CIRs had n. =3 taps

Continuously fluctuating fading with normalized Doppler
frequency f, =5, and CIRs’ taps changed at each k

STE’s temporal filter order D = 5, and three STE decision delays
T, =T,=7,=2
Semi-blind GN-CMA+SDD is compared with semi-blind SG-
CMA+SDD, with training based RLS STE as benchmark

Number of training symbols for semi-blind STEs was K = 24,
slightly larger than STE’s dimension \__

RLS STE kept training continuously, which was impractical but
offered lower bound of achievable performance



RLS

Forgetting factor 4 =0.995 for training-based RLS algorithm

Influence of 4 to average MSE of training-based RLS algorithm (SNR of
20 dB, averaged over all three users and over 50 runs)

0.49 r

0.48 i

0.47

0.46‘\

©
~
(&)

o
»
I

o
~
w

Average Mean Square Error

© O
>~ »
- N

o
~

87
\\w

0.39 : '
%.992 0.993 0.994 0.995 0.996 0.997 0.998
forgetting factor A




GN-CMA+SDD

T 1=0.985tepp = 0.65, Hewa =0.0land p=0.4 for GN-CMA+SDD algorithm
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SG-CMA+3SDD

S
3 piegn =5%107 1 =3%x107 and p=0.4 for SG-CMA+SDD algorithm
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MSE Performance

MSE tracking performance of continuously training RLS, semi-
blind SG-CMA+SDD and semi-blind GN-CMA+SDD

(SNR= 20 dB, average over all three users and over 50 runs)
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SER Performance

SER, averaged over all three users, of continuously training RLS,
semi-blind SG-CMA+SDD and semi-blind GN-CMA+SDD
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Conclusion

We have investigated semi-blind GN-CMA+SDD STE operating
in dispersive Rayleigh fading MIMO environments

Tracking performance of this semi-blind algorithm is close to
continuously training-based RLS

Continuously training-based RLS STE is impractical, and its SER
offers a low bound of achievable performance

This semi-blind GN-CMA+SDD algorithm offers a practical
means to adapt STE in hostile dispersive fading MIMOs



