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Motivations

Space-time equalization : an effective means of suppressing both

ISI and CCI for frequency selective MIMO systems

① Training based adaptation: simple but considerably reduces

achievable system throughput

② Blind based adaptation: inherently high complexity and slow

convergence, also suffering from unavoidable estimation and

decision ambiguities

③ Semi-blind based adaptation: provide good performance

with high convergence speed and simple computation

complexity with minimum training overhead



Existing Works

 Semi-blind stochastic-gradient(SG) based spatial equalizer 

for stationary frequency nonselective MIMO

 SG-based concurrent Constant Modulus Algorithm and Soft 

Decision-Directed adaptation (SG-CMA+SDD)

 high performance with minimum training

 Semi-blind gradient-Newton(GN) based spatial equalizer for 

stationary frequency selective MIMO

 GN-based concurrent Constant Modulus Algorithm and Soft 

Decision-Directed adaptation (GN-CMA+SDD)

 high performance with minimum training

 For time-varying MIMOs, no results has been produced



Contribution

We investigate tracking performance of semi-blind GN-

CMA+SDD STE operating in dispersive Rayleigh fading MIMOs

 Continuously Training-based recursive least squares (RLS) STE 

 Offering a low bound of the system’s achievable performance

 Impossible to realize

 Tracking performance is close to the continuously training-

based RLS algorithm

 Offering a practical way to adapt a STE in the hostile 

dispersive fading MIMO environment



MIMO channels

 CIR taps        : Rayleigh 
magnitudes with normalized 
Doppler frequency    and 
unity power

 Continuously fluctuating 
fading, different fading 
magnitude and phase for 
each         at each k
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Space-time Equalizer (STE)

 Received signal vector

 is the transmitted symbol vector 

with user-q’s data                                                    , where D
is the temporal filter length 

 is the AWGN vector 

with

 is overall system’s CIR matrix
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 qth STE output for detecting user-q’s data          , where     is 

decision delay 

 qth STE weight vector
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Least Squares Estimate

 K available training symbols, and available training data:

 Least Square (LS) estimate of STE’s weight vector 

 To ensure full rank of        ,            , the dimension of STE

 To maintain throughput, we choose minimum training length
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Gradient-Newton Adaptation

 SG adaptation suffers from slow convergence and high 

steady-state misadjustment in highly correlated signal 

environments

 Similar to RLS, GN adaptation is effective in such hostile signal 

environments, at cost of increased complexity

 “Kalman” gain

 Inverse “autocorrelation” matrix

 Forgetting factor            , and initial 
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GN-CMA

 Given initial LS estimate , split STE’s weight vector to two parts

with 

 Gradient-Newton constant modulus algorithm for

 Given                               , error signal is 

 Given step size        , weight adaptation

 If Stochastic-gradient CMA
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SDD Scheme

 For M-QAM, divide  

complex plane into 

regions:

where

 If STE’s output             , 

local approximation of 

marginal PDF

 SDD: “maximize” 
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GN-SDD

 Gradient-Newton soft decision directed adaptation for

 is step size

 is the cluster width

where 

 If Stochastic-gradient SDD

)(, kdqw

 

dq

qLMAP

SDDdqdq

kkJ
kkk

,

,,

),(
)()()1(

w

w
Pww




 

SDD



  
 







 i

ir

l

lm

qmr

sky

Ndq

LMAP kkyse
Z

J
mrq2

12

2

12

*

,

2

)(

,

)()(
1

2

,

x
w

















 
  

  2

)(
exp

2

,
2

12

2

12

mrq
i

rr

l

lm

N

sky
Z

IP )(k



Simulation Setting

 Q = 3 users with 16-QAM, and P = 4 receive antennas

 Each of                CIRs had            taps

 Continuously fluctuating fading with normalized Doppler 
frequency           , and CIRs’ taps changed at each k

 STE’s temporal filter order D = 5, and three STE decision delays

 Semi-blind GN-CMA+SDD is compared with semi-blind SG-
CMA+SDD, with training based RLS STE as benchmark

 Number of training symbols for semi-blind STEs was K = 24, 
slightly larger than STE’s dimension

 RLS STE kept training continuously, which was impractical but 
offered lower bound of achievable performance
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RLS

 Forgetting factor              for training-based RLS algorithm995.0

Influence of     to average MSE of training-based RLS algorithm (SNR of 

20 dB, averaged over all three users and over 50 runs)
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GN-CMA+SDD

 ,               ,                and             for GN-CMA+SDD algorithm985.0 01.0CMA65.0SDD 4.0
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SG-CMA+SDD
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MSE Performance

 MSE tracking performance of continuously training RLS, semi-

blind SG-CMA+SDD and semi-blind GN-CMA+SDD
(SNR= 20 dB, average over all three users and over 50 runs)
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SER Performance

 SER, averaged over all three users, of continuously training RLS, 

semi-blind SG-CMA+SDD and semi-blind GN-CMA+SDD
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Conclusion

We have investigated semi-blind GN-CMA+SDD STE operating 

in dispersive Rayleigh fading MIMO environments

 Tracking performance of this semi-blind algorithm is close to 

continuously training-based RLS

 Continuously training-based RLS STE is impractical, and its SER 

offers a low bound of achievable performance

 This semi-blind GN-CMA+SDD algorithm offers a practical

means to adapt STE in hostile dispersive fading MIMOs


