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Motivations

Space-time equalization : an effective means of suppressing both

ISI and CCI for frequency selective MIMO systems

① Training based adaptation: simple but considerably reduces

achievable system throughput

② Blind based adaptation: inherently high complexity and slow

convergence, also suffering from unavoidable estimation and

decision ambiguities

③ Semi-blind based adaptation: provide good performance

with high convergence speed and simple computation

complexity with minimum training overhead



Existing Works

 Semi-blind stochastic-gradient(SG) based spatial equalizer 

for stationary frequency nonselective MIMO

 SG-based concurrent Constant Modulus Algorithm and Soft 

Decision-Directed adaptation (SG-CMA+SDD)

 high performance with minimum training

 Semi-blind gradient-Newton(GN) based spatial equalizer for 

stationary frequency selective MIMO

 GN-based concurrent Constant Modulus Algorithm and Soft 

Decision-Directed adaptation (GN-CMA+SDD)

 high performance with minimum training

 For time-varying MIMOs, no results has been produced



Contribution

We investigate tracking performance of semi-blind GN-

CMA+SDD STE operating in dispersive Rayleigh fading MIMOs

 Continuously Training-based recursive least squares (RLS) STE 

 Offering a low bound of the system’s achievable performance

 Impossible to realize

 Tracking performance is close to the continuously training-

based RLS algorithm

 Offering a practical way to adapt a STE in the hostile 

dispersive fading MIMO environment



MIMO channels

 CIR taps        : Rayleigh 
magnitudes with normalized 
Doppler frequency    and 
unity power

 Continuously fluctuating 
fading, different fading 
magnitude and phase for 
each         at each k
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Space-time Equalizer (STE)

 Received signal vector

 is the transmitted symbol vector 

with user-q’s data                                                    , where D
is the temporal filter length 

 is the AWGN vector 

with

 is overall system’s CIR matrix
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 qth STE output for detecting user-q’s data          , where     is 

decision delay 

 qth STE weight vector
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Least Squares Estimate

 K available training symbols, and available training data:

 Least Square (LS) estimate of STE’s weight vector 

 To ensure full rank of        ,            , the dimension of STE

 To maintain throughput, we choose minimum training length
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Gradient-Newton Adaptation

 SG adaptation suffers from slow convergence and high 

steady-state misadjustment in highly correlated signal 

environments

 Similar to RLS, GN adaptation is effective in such hostile signal 

environments, at cost of increased complexity

 “Kalman” gain

 Inverse “autocorrelation” matrix

 Forgetting factor            , and initial 
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GN-CMA

 Given initial LS estimate , split STE’s weight vector to two parts

with 

 Gradient-Newton constant modulus algorithm for

 Given                               , error signal is 

 Given step size        , weight adaptation

 If Stochastic-gradient CMA
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SDD Scheme

 For M-QAM, divide  

complex plane into 

regions:

where

 If STE’s output             , 

local approximation of 

marginal PDF

 SDD: “maximize” 
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GN-SDD

 Gradient-Newton soft decision directed adaptation for

 is step size

 is the cluster width

where 

 If Stochastic-gradient SDD
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Simulation Setting

 Q = 3 users with 16-QAM, and P = 4 receive antennas

 Each of                CIRs had            taps

 Continuously fluctuating fading with normalized Doppler 
frequency           , and CIRs’ taps changed at each k

 STE’s temporal filter order D = 5, and three STE decision delays

 Semi-blind GN-CMA+SDD is compared with semi-blind SG-
CMA+SDD, with training based RLS STE as benchmark

 Number of training symbols for semi-blind STEs was K = 24, 
slightly larger than STE’s dimension

 RLS STE kept training continuously, which was impractical but 
offered lower bound of achievable performance
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RLS

 Forgetting factor              for training-based RLS algorithm995.0

Influence of     to average MSE of training-based RLS algorithm (SNR of 

20 dB, averaged over all three users and over 50 runs)
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GN-CMA+SDD

 ,               ,                and             for GN-CMA+SDD algorithm985.0 01.0CMA65.0SDD 4.0

(a)              ,                ,           , 01.0CMA 65.0SDD 4.0 dBSNR 20 (b)           ,                ,           , 985.0 65.0SDD 4.0 dBSNR 20
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SG-CMA+SDD

 ,                     and             for SG-CMA+SDD algorithm4103 SDD
6105 CMA 4.0
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MSE Performance

 MSE tracking performance of continuously training RLS, semi-

blind SG-CMA+SDD and semi-blind GN-CMA+SDD
(SNR= 20 dB, average over all three users and over 50 runs)

0 200 400 600 800 1000 1200 1400 1600 1800

10
0

10
1

Sample

A
v
e

ra
g

e
 M

e
a

n
 S

q
u

a
re

 E
rr

o
r

 

 

SG-CMA+SDD
GN-CMA+SDD
Training-based RLS



SER Performance

 SER, averaged over all three users, of continuously training RLS, 

semi-blind SG-CMA+SDD and semi-blind GN-CMA+SDD
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Conclusion

We have investigated semi-blind GN-CMA+SDD STE operating 

in dispersive Rayleigh fading MIMO environments

 Tracking performance of this semi-blind algorithm is close to 

continuously training-based RLS

 Continuously training-based RLS STE is impractical, and its SER 

offers a low bound of achievable performance

 This semi-blind GN-CMA+SDD algorithm offers a practical

means to adapt STE in hostile dispersive fading MIMOs


