Peichang Zhang, Indrakshi Dey, Shinya Sugiura and Sheng Chen

School of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ, UK
E-mails: {pz3g09, id2g09, ss07r, sqc}@ecs.soton.ac.uk

VTC 2011 Spring, Budapest, May 15-18, 2011

Outline

Introduction

- Introduction
 - Motivations
 - Our contributions
- CSTSK MIMO System
 - Transmitter Model
 - Receiver Model
- Adaptive CSTSK MIMO System
 - Training Based Adaptive CSTSK
 - Semi-Blind Iterative Scheme
- 4 Conclusions

Conclusions

Outline

- Introduction
 - Motivations
 - Our contributions
- CSTSK MIMO System
 - Transmitter Model
 - Receiver Model
- Adaptive CSTSK MIMO System
 - Training Based Adaptive CSTSK
 - Semi-Blind Iterative Scheme
- 4 Conclusions

Introduction

MIMO: exploits **space** and **time** dimensions ⇒ **diversity** and **multiplexing** gains

- Vertical Bell Lab layered space-time (V-BLAST)
 - Offers high multiplexing gain at high decoding complexity owing to inter-channel interference (ICI)
- Orthogonal space-time block codes (OSTBCs)
 - Maximum diversity gain at expense of bandwidth efficiency, with low complexity
- Linear dispersion codes (LDCs)
 - Flexible tradeoff between diversity and multiplexing gains, with high complexity
- Spatial modulation (SM) and space-shift keying (SSK)
 - Mainly multiplexing gain, can achieve receive diversity
 - No ICI ⇒ low-complexity single-antenna ML detection

Outline

- Introduction
 - Motivations
 - Our contributions
- CSTSK MIMO System
 - Transmitter Model
 - Receiver Model
- 3 Adaptive CSTSK MIMO System
 - Training Based Adaptive CSTSK
 - Semi-Blind Iterative Scheme
- Conclusions

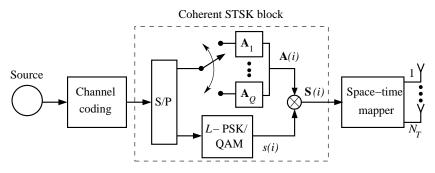
Unified MIMO Architecture

- Space-time shift keying (STSK): unified MIMO including V-BLAST, STBCs, LDCs, SM and SSK as special cases
 - Fully exploit both spatial and time dimensions
 - Flexible diversity versus multiplexing gain tradeoff
 - No ICI with low-complexity single-antenna ML detection
- Coherent STSK (CSTSK):
 - Better performance and flexible design
 - Requires channel state information (CSI)
- Differential STSK:
 - Doubling noise power, limited design in modulation scheme and choice of linear dispersion matrices
 - No need for CSI

Coherent MIMO

Introduction

- Ability of an MIMO system to approach its capacity heavily relies on accuracy of CSI
- Training based schemes: capable of accurately estimating MIMO channel at expense of large training overhead ⇒ considerable reduction in system throughput
- Blind methods: high complexity and slow convergence, also unavoidable estimation and decision ambiguities
- Semi-blind methods offer attractive practical means of implementing adaptive MIMO systems
 - Low-complexity ML data detection in STSK ⇒ efficient semi-blind iterative channel estimation and data detection


Conclusions

Introduction

- Introduction
 - Motivations
 - Our contributions
- CSTSK MIMO System
 - Transmitter Model
 - Receiver Model
- Adaptive CSTSK MIMO System
 - Training Based Adaptive CSTSK
 - Semi-Blind Iterative Scheme
- Conclusions

CSTSK Transmitter

- CSTSK (N_T, N_B, T_n, Q) with L-PSK/QAM:
 - N_T : number of transmitter antennas
 - N_R: number of receiver antennas
 - T_n: number of time slots per STSK block, block index i
 - Q: size of linear dispersion matrices
 - L: size of modulation constellation

• Each block $\mathbf{S}(i) \in \mathbb{C}^{N_T \times T_n}$ is generated from $\log_2(L \cdot Q)$ bits by

$$S(i) = s(i)A(i)$$

log₂(L) bits decides s(i) from L-PSK/QAM modulation scheme

$$s(i) \in \mathcal{S} = \{s_l \in \mathbb{C}, 1 \leq l \leq L\}$$

log₂(Q) bits selects A(i) from set of Q dispersion matrices

$$\mathbf{A}(i) \in \mathcal{A} = {\mathbf{A}_q \in \mathbb{C}^{N_T \times T_n}, 1 \leq q \leq Q}$$

Each dispersion matrix meets power constraint $\mathrm{tr}[\mathbf{A}_q^H\mathbf{A}_q]=T_n$

Normalised throughput per time-slot of this CSTSK scheme is

$$R = \frac{\log_2(Q \cdot L)}{T_2} \text{ [bits/symbol]}$$

CSTSK System Design

Introduction

- \bullet (N_T, N_R, T_n, Q) and L-PSK/QAM: high degree of design freedom
 - Similar to LDCs, strike flexible diversity versus multiplexing gain trade off; but unlike LDCs, impose no ICI
 - Optimise: number of transmit and receive antennas, set of dispersion matrices ⇒ desired diversity/multiplexing gains
- Unlike SM/SSK, fully exploit both spatial and time dimensions
 - SM and SSK can be viewed as special case of STSK
 - Set $T_n = 1$, $Q = N_T$ and choose

$$\mathbf{A}_1 = \left[egin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array}
ight], \; \mathbf{A}_2 = \left[egin{array}{c} 0 \\ 1 \\ \vdots \\ 0 \end{array}
ight], \; \cdots, \; \mathbf{A}_Q = \left[egin{array}{c} 0 \\ 0 \\ \vdots \\ 1 \end{array}
ight] \Rightarrow \mathsf{SM}$$

Conclusions

Outline

Introduction

- Introduction
 - Motivations
 - Our contributions
- CSTSK MIMO System
 - Transmitter Model
 - Receiver Model
- 3 Adaptive CSTSK MIMO System
 - Training Based Adaptive CSTSK
 - Semi-Blind Iterative Scheme
- Conclusions

Conclusions

Received Signal

• Received signal matrix $\mathbf{Y}(i) \in \mathbb{C}^{N_R \times T_n}$ takes MIMO model

$$\mathbf{Y}(i) = \mathbf{HS}(i) + \mathbf{V}(i)$$

- Channel matrix $\mathbf{H} \in \mathbb{C}^{N_R \times N_T}$: each element obeys $\mathcal{CN}(0,1)$
- Noise matrix $\mathbf{V}(i) \in \mathbb{C}^{N_R \times T_n}$: each element obeys $\mathcal{CN}(0, N_0)$
- Signal to noise ratio (SNR) is defined as

$$SNR = E_s/N_o$$

E_s is average symbol energy of L-PSK/QAM modulation scheme

• Let $\text{vec}[\cdot]$ be vector stacking operator, \mathbf{I}_M be $M \times M$ identity matrix and ⊗ be Kronecker product

Introduction

Introduce notations

$$\begin{split} \overline{\mathbf{y}}(i) &= \text{vec}[\mathbf{Y}(i)] \in \mathbb{C}^{N_B T_n \times 1} & \overline{\mathbf{H}} = \mathbf{I}_{T_n} \otimes \mathbf{H} \in \mathbb{C}^{N_B T_n \times N_T T_n} \\ \overline{\mathbf{v}}(i) &= \text{vec}[\mathbf{V}(i)] \in \mathbb{C}^{N_B T_n \times 1} & \Theta = \begin{bmatrix} \text{vec}[\mathbf{A}_1] \cdots \text{vec}[\mathbf{A}_Q] \end{bmatrix} \in \mathbb{C}^{N_T T_n \times Q} \\ \mathbf{k}(i) &= \underbrace{\begin{bmatrix} 0 & \cdots & 0 \\ q-1 \end{bmatrix}}_{Q-q} & \mathbf{s}(i) \underbrace{0 & \cdots & 0}_{Q-q} \end{bmatrix}^T \in \mathbb{C}^{Q \times 1} \end{split}$$

where q is index of dispersion matrix \mathbf{A}_{q} activated

• Equivalent transmitted signal vector $\mathbf{k}(i)$ takes value from set

$$\mathcal{K} = \{ \mathbf{k}_{q,l} \in \mathbb{C}^{Q \times 1}, \ 1 \le q \le Q, \ 1 \le l \le L \}$$

which contains $Q \cdot L$ legitimate transmitted signal vectors

$$\mathbf{k}_{q,l} = [\underbrace{0 \cdots 0}_{q-1} \ s_l \ \underbrace{0 \cdots 0}_{Q-q}]^T, \ 1 \leq q \leq Q, 1 \leq l \leq L$$

where s_l is the *l*th symbol in the *L*-point constellation S

• Equivalent received signal model: $\overline{\mathbf{y}}(i) = \overline{\mathbf{H}} \Theta \mathbf{k}(i) + \overline{\mathbf{v}}(i)$

Introduction

• Let (q, l) correspond to specific input bits of ith STSK block, which are mapped to s_l and \mathbf{A}_q . Then ML estimates (\hat{q}, \hat{l}) are

$$\begin{aligned} (\hat{q}, \hat{l}) &= & \arg \min_{\substack{1 \leq q \leq Q \\ 1 \leq l \leq L}} \|\overline{\mathbf{y}}(i) - \overline{\mathbf{H}} \, \mathbf{\Theta} \, \mathbf{k}_{q,l}\|^2 \\ &= & \arg \min_{\substack{1 \leq q \leq Q \\ 1 \leq l \leq L}} \|\overline{\mathbf{y}}(i) - s_l (\overline{\mathbf{H}} \, \mathbf{\Theta})_q\|^2$$

where $(\overline{\mathbf{H}}\,\mathbf{\Theta})_a$ denotes qth column of the matrix $\overline{\mathbf{H}}\,\mathbf{\Theta}$

• Assume channel's coherence time lasts the duration of τ STSK blocks. Then complexity of detecting $\tau \log_2(Q \cdot L)$ bits is

$$C_{
m ML} pprox 4QT_nN_R(3 au L + 2N_T)$$
 [Flops]

Complexity Comparison

- For STSK, optimal ML detection of $\tau \times \log_2(Q \cdot L)$ bits
 - Only requires search for a total of $\tau \times (Q \cdot L)$ points
- For simplicity, assuming $N_T = N_B$, full optimal ML detection for conventional MIMO with the same rate R
 - Requires search for a total of $\tau \times N_R^{Q \cdot L}$ points, which may become prohibitive
- K-best sphere decoding approximates ML performance with K set to $K = Q \cdot L$ for conventional MIMO
 - Requires search for a total of $\tau \times (L \cdot Q + (N_R 1)(L \cdot Q)^2)$ points
 - while imposing some additional complexity necessitated by Cholesky factorisation

Adaptive CSTSK MIMO System

•**00**0000000

Outline

- Introduction
 - Motivations
 - Our contributions
- CSTSK MIMO System
 - Transmitter Model
 - Receiver Model
- Adaptive CSTSK MIMO System
 - Training Based Adaptive CSTSK
 - Semi-Blind Iterative Scheme
- Conclusions

Least Square Channel Estimate

 Assume number of available training blocks is M and training data are arranged as

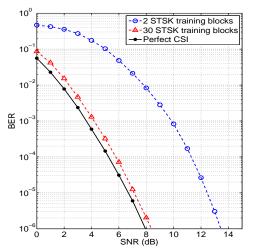
$$\mathbf{Y}_{tM} = [\mathbf{Y}(1) \ \mathbf{Y}(2) \cdots \mathbf{Y}(M)]$$

 $\mathbf{S}_{tM} = [\mathbf{S}(1) \ \mathbf{S}(2) \cdots \mathbf{S}(M)]$

• Then LSCE based on $(\mathbf{Y}_{tM}, \mathbf{S}_{tM})$ is given by

$$\hat{\mathbf{H}}_{\mathrm{LSCE}} = \mathbf{Y}_{\mathrm{t}M}\mathbf{S}_{\mathrm{t}M}^{H}\big(\mathbf{S}_{\mathrm{t}M}\mathbf{S}_{\mathrm{t}M}^{H}\big)^{-1}$$

• In order for $\mathbf{S}_{tM}\mathbf{S}_{tM}^H$ to have full rank of N_T , it is necessary that $M \cdot T_n \geq N_T$ and this requires a minimum of


$$M = \left\lceil \frac{N_T}{T_n} \right\rceil$$
 training blocks

 However, to achieve an accurate channel estimate, large training overhead is required

(4, 4, 2, 4) QPSK Example

- Convolution code with code rate 2/3, octally represented generator polynomials of $G_1 = [23, 35]_8$ and $G_1 = [5, 13]_8$
- Hard-input hard-output Viterbi algorithm decoding
- $(N_T = 4, N_B = 4, T_n = 2, Q = 4)$ with L = 4 QPSK modulation
- Frame of 800 information source bits, after channel coding, are mapped to $\tau = 300$ STSK blocks
- Average over 100 channel realisations

Adaptive CSTSK MIMO System

Introduction

- Introduction
 - Motivations
 - Our contributions
- CSTSK MIMO System
 - Transmitter Model
 - Receiver Model
- 3 Adaptive CSTSK MIMO System
 - Training Based Adaptive CSTSK
 - Semi-Blind Iterative Scheme
- Conclusions

Semi-Blind Iterative algorithm

Use minimum $M = \left| \frac{N_T}{T_n} \right|$ training blocks to obtain initial $\hat{\mathbf{H}}_{LSCE}$, and let observation data for ML detector be $\mathbf{Y}_{d\tau} = [\mathbf{Y}(1) \ \mathbf{Y}(2) \ \cdots \ \mathbf{Y}(\tau)]$

- **1** Set iteration index t = 0 and channel estimate $\tilde{\mathbf{H}}^{(t)} = \hat{\mathbf{H}}_{LSCE}$;
- **2** Given $\tilde{\mathbf{H}}^{(t)}$, perform ML detection on $\mathbf{Y}_{d\tau}$ and carry out channel decoding on detected bits. Corresponding detected information bits, after passing through channel coder again, are re-modulated to yield

$$\hat{\mathbf{S}}_{\mathrm{e}\tau}^{(t)} = [\hat{\mathbf{S}}^{(t)}(1) \, \hat{\mathbf{S}}^{(t)}(2) \, \cdots \, \hat{\mathbf{S}}^{(t)}(\tau)];$$

Update channel estimate with decision-directed LSCE

$$\tilde{\mathbf{H}}^{(t+1)} = \mathbf{Y}_{\mathrm{d}\tau} (\hat{\mathbf{S}}_{\mathrm{e}\tau}^{(t)})^H (\hat{\mathbf{S}}_{\mathrm{e}\tau}^{(t)} (\hat{\mathbf{S}}_{\mathrm{e}\tau}^{(t)})^H)^{-1};$$

4 Set t = t + 1: If $t < I_{\text{max}}$, go to Step 2); otherwise, stop.

Simulation Settings

Introduction

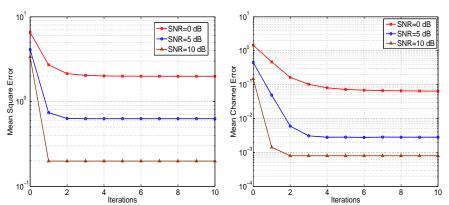
Performance was assessed using estimated mean square error

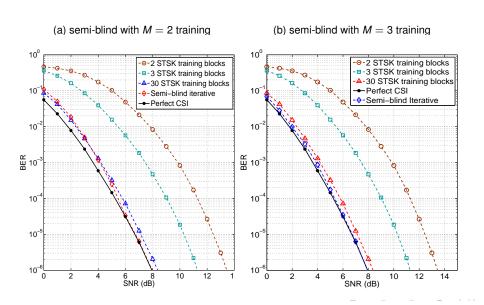
$$J_{\text{MSE}}(\tilde{\mathbf{H}}) = \frac{1}{\tau \cdot N_R \cdot T_n} \sum_{i=1}^{\tau} \|\mathbf{Y}(i) - \tilde{\mathbf{H}} \, \hat{\mathbf{S}}(i) \|^2$$

mean channel estimation error

$$J_{\text{MCE}}(\tilde{\mathbf{H}}) = \frac{1}{N_R \cdot N_T} \|\mathbf{H} - \tilde{\mathbf{H}}\|^2$$

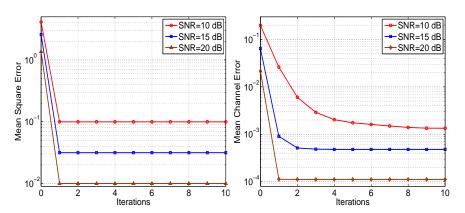
and BER, where $\tilde{\mathbf{H}}$ is channel estimate, $\hat{\mathbf{S}}(i)$ are ML-detected and re-modulated data, and \mathbf{H} is true MIMO channel matrix


- Performance averaged over 100 channel realisations
- Convolution code with code rate 2/3, octally represented generator polynomials of $G_1 = [23, 35]_8$ and $G_1 = [5, 13]_8$
- Hard-input hard-output Viterbi algorithm for channel decoding

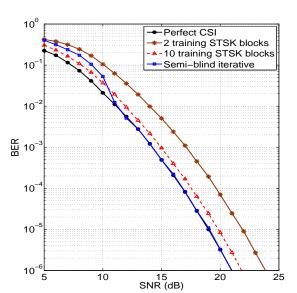

Conclusions

(4, 4, 2, 4) QPSK (Convergence)

- $(N_T = 4, N_R = 4, T_n = 2, Q = 4)$ with L = 4 QPSK modulation
- \bullet Frame of 800 information source bits, after channel coding, are mapped to $\tau=$ 300 STSK blocks
- Semi-blind with M = 2 training STSK blocks



(4, 4, 2, 4) QPSK (Bit Error Rate)


(4, 2, 2, 4) 16QAM (Convergence)

- $(N_T = 4, N_B = 2, T_n = 2, Q = 4)$ with L = 16 QAM modulation
- Frame of 800 information source bits, after channel coding, are mapped to $\tau = 200$ STSK blocks
- Semi-blind with M = 2 training STSK blocks

(4, 2, 2, 4) 16QAM (Bit Error Rate)

Semi-blind with M = 2 training

Summary

- Space-time shift keying offers a unified MIMO architecture
 - V-BLAST, OSTBCs, LDCs, SM and SSK are special cases
 - Plexible diversity versus multiplexing gain trade off
 - No ICI and low-complexity single-antenna ML detection
- A semi-blind iterative channel estimation and data detection scheme for coherent STSK systems
 - Use minimum number of training STSK blocks to provide initial LSCE for aiding the iterative procedure
 - Proposed semi-blind iterative channel estimation and ML data detection scheme is inherently low-complexity
 - Typically no more than five iterations to converge to optimal ML detection performance obtained with perfect CSI

