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Motivations

Many practical applications involve multi-dimensional complex-valued

signals, which lead to development of complex-valued neural networks

Chen et al. (1994) developed a
complex-valued RBF network

RBEF' response
o(llx —cll/p)

can be interpreted as conditional
probability density function

Complex-valued RBF network with
complex-valued RBF response is of
theoretical and practical interests
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Complex-Valued RBF Network

(1 Need to develop theoretic oriented complex-valued RBF node response

function, but for practical purpose, we will use

¢i(x) = ([ Rlx] = Rlci] |/ p) + 7e(([S[x] = Sledll/p)

1 R[e] and J[e| denote real and imaginary parts, j = +/—1, ¢; € C™ ith
complex-valued RBF , and p? > 0 RBF variance

1 Two choices for real-valued basis function ¢(e)

o(x/1) = x2log(x) and o(x/p) =e X /P

1 Almost all learning methods for real-valued RBF networks can be ex-
tended to complex-valued case
O This presentation is for regression application

O Another presentation in this session will consider
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Complex-Valued RBF Regression

3 Given training set Dy = {x(k) € C™ y(k) € C};_,, construct

complex-valued RBF network
M
G(k) =) 0idi(x(k))
i=1

with modelling error e(k) = y(k) — y(k)
O Given RBF variance p?, use every x(k) as candidate RBF i.e.

M = N = regression model over Dy

y = P60 +e
where y = [y(1)---y(N)], e = [e(1)---e(N)]!, RBF weight vector
0 = [0;---0x]", complex-valued matrix ® = (¢ Py - D/l
with columns ¢; = [¢;(x(1)) ¢i(x(2)) - - ¢i(x(V))]"
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Orthogonal Decomposition

1 Orthogonal decomposition ® = WA, with orthogonal matrix
W = [w; wa - W)y]

and upper triangular complex-valued matrix

I ai2 -+ ai,m
0 1
A =
Apf—1,M
0 0 1 |

1 Regression model can alternatively be expressed as
y=Wg+e

where new weight vector g = [g1 g2 - - - gar]? satisfies AQ =g
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Locally Regularised OLS algorithm

1 Regularised least square criterion

M
Jr(g,A) =ee+g"Ag =y"y — > (w/lw; + \i) |9

1=1

where A = diag{\1, Ao, -+, Ap}, and A; regularisation parameters

A OLS forward selection based on regularised error reduction ratio

[rerr]; = (WiHWZ' -+ )\i) 9i* /vy

4 for updating regularisation parameters
old H
: e’e ,
aew — N2 2 1 <i<M
N —~°ld |g;|?
M
Vi = and 7y = E Vi
1=1
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D-optimality Experimental Design

1 Covariance of LS estimate proportional to inverse of design matrix
Cov[0] x (P7®)~

d D-optimality selects subset model ®,,  that maximises det(@i ®, )

Prevent selection of oversized model and problem of high estimate

variances

3 Maximising det(®; ®,,_) identical to maximising det(WZ W, )

det(®" ®) = det(WHW) = HW W,

or equivalently to minimising — log det(Wﬁls W, )

—log (det(WHW)) = Z — log(WZHWi)

1=1
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Combined LROLS and D-Optimality

A Combined LROLS and D-optimality algorithm adopts combined criterion

M
Jrp(8, A, 8) = Jr(g8.A) + 8 > —log(w/ w;)
1=1

(A Selection based on combined regularised error reduction ratio
crert]; = ((wiw; + A)|gil? + 8 log(wiw,)) /y'y
d There always exists an optimal subset model size ng, such that
lcrerr]; <0 for ng+1<I<M
(A Selection procedure automatically terminates with an ng-term model

very model with excellent generalisation capability
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A Modelling Example

n(k)
S(k) u(k) v(K) y(k)

nonlinear FIR nonlinear y(K)

— P P

element 1 channel element 2

1 Transmitted data symbols s(k) = sr(k) 4+ jsr(k) are 16-QAM

(A 1st nonlinear element: transmitter nonlinear high power amplifier

x |s(k)|?
— 2s(k) 6331+|sk(7~c>|2
1+ [s(k)|?

1 FIR linear channel with transfer function

u(k) = famp(s(k))

V(2)/U(z) = (0.3725+50.2172) (1 — (0.35 4 j0.7)z~") (1 — (0.5 + j)z~ ')
1 2nd nonlinear element: third-order complex-valued Volterra nonlinearity

7(k) = fvor(v(k)) = v(k) + 0.20%(k) — 0.10°(k)
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Underlying System

1 Let f(e) be complex-valued mapping specified this nonlinear channel
y(k) = y(k) + n(k) = f(x(k)) +n(k)
x(k) = [s(k) s(k — 1) s(k —2)]1 has Ny = 16 = 4096 states
X ={x;, 1 <1< Ny}

Noise-free channel output y(k) also has Ng values

<
|
——

= f(x1), 1 <1< Ny}
3 Identified model §(k) = f(x(k)) over X also have Ny values
Y={i=f(x), 1 <1< Ny}
Mean state error is defined as

Nst
1 2
M State E = yr — 1
can State Errror = N g g — 11

=1
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Identification Results

d Symbol power is scaled to 1.0, noise power 0.1, 600 training samples and

600 test samples

(1 Mean square error is defined by

N
_ 1 - 2
MSE = ﬁ ]; |?J(k) - ?J(k)\

(A For thin-plate-spline basis function, appropriate weighting is G = 10.0
1 For Gaussian basis function, appropriate weighting is 3 = 107°

(1 Results obtained using combined LROLS and D-optimality algorithm

basis function p° ns training MSE testing MSE mean state error
Gaussian 3.0 50 0.128931 0.142484 0.035443
thin-plate-spline | NA 57 0.117874 0.146306 0.038081
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Conclusions

d A fully complex-valued radial basis function network has been

proposed

d Both RBF weights and RBF nodes’ response are complex-
valued

d Almost all for real-valued RBF network

can be extended to this complex-valued RBF network

d Regression application is demonstrated using combined lo-
cally regularised OLS and D-optimality algorithm

1 Effectiveness of proposed algorithm is tested by complex-
valued nonlinear channel identification
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