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Motivations

o Many practical applications involve multi-dimensional complex-valued
signals, which lead to development of complex-valued neural networks

o Chen et al. (1994) developed a
complex-valued RBF network

o Real-valued RBF response

φ(‖x− c‖/ρ)

can be interpreted as conditional
probability density function

o Complex-valued RBF network with
complex-valued RBF response is of
theoretical and practical interests
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Complex-Valued RBF Network

o Need to develop theoretic oriented complex-valued RBF node response
function, but for practical purpose, we will use

φi(x) = ϕ(‖<[x]−<[ci]‖/ρ) + jϕ(‖=[x]−=[ci]‖/ρ)

o <[•] and =[•] denote real and imaginary parts, j =
√
−1, ci ∈ Cm ith

complex-valued RBF centre, and ρ2 > 0 RBF variance

o Two choices for real-valued basis function ϕ(•)

ϕ(χ/1) = χ2 log(χ) and ϕ(χ/ρ) = e−χ2/ρ2

o Almost all learning methods for real-valued RBF networks can be ex-
tended to complex-valued case

m This presentation is for regression application

m Another presentation in this session will consider classification
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Complex-Valued RBF Regression

o Given training set DN = {x(k) ∈ Cm, y(k) ∈ C}N
k=1, construct

complex-valued RBF network

ŷ(k) =
M∑
i=1

θiφi(x(k))

with modelling error e(k) = y(k)− ŷ(k)

o Given RBF variance ρ2, use every x(k) as candidate RBF centre, i.e.
M = N ⇒ regression model over DN

y = Φθ + e

where y = [y(1) · · · y(N)]T , e = [e(1) · · · e(N)]T , RBF weight vector
θ = [θ1 · · · θM ]T , complex-valued regression matrix Φ = [φ1 φ2 · · ·φM ]
with columns φi = [φi(x(1)) φi(x(2)) · · ·φi(x(N))]T
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Orthogonal Decomposition

o Orthogonal decomposition Φ = WA, with orthogonal matrix

W = [w1 w2 · · ·wM ]

and upper triangular complex-valued matrix

A =


1 a1,2 · · · a1,M

0 1
. . .

...
...

. . . . . . aM−1,M

0 · · · 0 1


o Regression model can alternatively be expressed as

y = Wg + e

where new weight vector g = [g1 g2 · · · gM ]T satisfies Aθ = g
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Locally Regularised OLS algorithm

o Regularised least square criterion

JR(g,λ) = eHe + gHΛg = yHy −
M∑
i=1

(
wH

i wi + λi

)
|gi|2

where Λ = diag{λ1, λ2, · · · , λM}, and λi regularisation parameters

o OLS forward selection based on regularised error reduction ratio

[rerr]i =
(
wH

i wi + λi

)
|gi|2/yHy

o Evidence procedure for updating regularisation parameters

λnew
i =

γold
i

N − γold

eHe
|gi|2

, 1 ≤ i ≤ M

γi =
wH

i wi

λi + wH
i wi

and γ =
M∑
i=1

γi
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D-optimality Experimental Design

o Covariance of LS estimate proportional to inverse of design matrix

Cov[θ̂] ∝ (ΦHΦ)−1

o D-optimality selects subset model Φns that maximises det(ΦH
ns

Φns)

Prevent selection of oversized ill-posed model and problem of high estimate

variances

o Maximising det(ΦH
ns

Φns) identical to maximising det(WH
ns

Wns)

det(ΦHΦ) = det(WHW) =
M∏
i=1

wH
i wi

or equivalently to minimising − log det(WH
ns

Wns)

− log
(
det(WHW)

)
=

M∑
i=1

− log(wH
i wi)
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Combined LROLS and D-Optimality

o Combined LROLS and D-optimality algorithm adopts combined criterion

JRD(g,λ, β) = JR(g,λ) + β

M∑
i=1

− log(wH
i wi)

o Selection based on combined regularised error reduction ratio

[crerr]i =
(
(wH

i wi + λi)|gi|2 + β log(wH
i wi)

)
/yHy

o There always exists an optimal subset model size ns, such that

[crerr]l ≤ 0 for ns + 1 ≤ l ≤ M

o Selection procedure automatically terminates with an ns-term model

very sparse model with excellent generalisation capability
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A Modelling Example

u(k) v(k)
Σ

s(k) y(k)
y(k)

n(k)

nonlinear
element 1

nonlinear
element 2

FIR
channel

o Transmitted data symbols s(k) = sR(k) + jsI(k) are 16-QAM

o 1st nonlinear element: transmitter nonlinear high power amplifier

u(k) = famp(s(k)) =
2s(k)

1 + |s(k)|2
e
j π

3
|s(k)|2

1+|s(k)|2

o FIR linear channel with transfer function

V (z)/U(z) = (0.3725+j0.2172)
(
1− (0.35 + j0.7)z−1

) (
1− (0.5 + j)z−1

)
o 2nd nonlinear element: third-order complex-valued Volterra nonlinearity

ȳ(k) = fVol(v(k)) = v(k) + 0.2v2(k)− 0.1v3(k)
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Underlying System

o Let f(•) be complex-valued mapping specified this nonlinear channel

y(k) = ȳ(k) + n(k) = f(x(k)) + n(k)

x(k) = [s(k) s(k − 1) s(k − 2)]T has Nst = 163 = 4096 states

X = {x̄l, 1 ≤ l ≤ Nst}

Noise-free channel output ȳ(k) also has Nst values

Ȳ = {ȳl = f(x̄l), 1 ≤ l ≤ Nst}

o Identified model ŷ(k) = f̂(x(k)) over X also have Nst values

Ŷ = {ŷl = f̂(x̄l), 1 ≤ l ≤ Nst}

Mean state error is defined as

Mean State Errror =
1

2Nst

Nst∑
l=1

|ȳl − ŷl|2

http://www-mobile.ecs.soton.ac.uk
http://www.wcci2008.org


11School of ECS, University of Southampton, UKWCCI 2008

Identification Results

o Symbol power is scaled to 1.0, noise power 0.1, 600 training samples and
600 test samples

o Mean square error is defined by

MSE =
1

2N

N∑
k=1

|y(k)− ŷ(k)|2

o For thin-plate-spline basis function, appropriate weighting is β = 10.0

o For Gaussian basis function, appropriate weighting is β = 10−6

o Results obtained using combined LROLS and D-optimality algorithm

basis function ρ2 ns training MSE testing MSE mean state error

Gaussian 3.0 50 0.128931 0.142484 0.035443

thin-plate-spline NA 57 0.117874 0.146306 0.038081
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Conclusions

o A fully complex-valued radial basis function network has been

proposed

o Both RBF weights and RBF nodes’ response are complex-

valued

o Almost all learning algorithms for real-valued RBF network

can be extended to this complex-valued RBF network

o Regression application is demonstrated using combined lo-

cally regularised OLS and D-optimality algorithm

o Effectiveness of proposed algorithm is tested by complex-

valued nonlinear channel identification
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