WCCI 2008 Presentation

Sparse Kernel Density Estimator Using Orthogonal Regression Based on D-Optimality Experimental Design

Sheng Chen^{\dagger}, Xia Hong^{\ddagger} and Chris J. Harris^{\dagger}

- [†] School of Electronics and Computer Science University of Southampton Southampton SO17 1BJ, UK
 - [‡] School of Systems Engineering University of Reading Reading RG6 6AY, UK

- □ Overview of existing **density estimation** methods
- □ Proposed sparse kernel density estimator:
 - Convert **unsupervised** density learning into **constrained regression** by adopting **Parzen window estimate** as desired response
 - Unsupervised **orthogonal forward regression** based on *D*-optimality experimental design to determine structure
 - **Multiplicative nonnegative quadratic programming** to calculate kernel weights

\square Empirical investigation and performance comparison

□ Parametric Gaussian mixture model, GMM

- **O** Nonlinear optimisation by EM algorithm to determine all parameters
- **O** Need to determine number of components

□ Non-parametric **Parzen window estimator**, PWE

- **O** Extremely simple and accurate, non-sparse with high test complexity
- **O** Need to determine kernel width
- $\hfill \Box$ **Sparse kernel density estimators** by making some weights zeros
 - \bigcirc **SVM**, estimating in CDF space with EDF as desired response
 - O Reduced set density estimator, **RSDE**, (Girolami and He, 2003), similar to SVM with different criterion
 - **O** Need to determine kernel width

- □ Select SKDEs by **orthogonal forward regression**
- □ Estimating in CDF space with EDF as desired response
 - O Selection by minimising training MSE (Choudhury, 2003)
 - O Selection by minimising **leave-one-out** MSE with local regularisation, LOO-MSE-LR, (Chen *et al*, 2004)
 - Need to determine kernel width, *ad hoc* mechanisms to ensure nonnegative and unity constraints for kernel weights (increase computation)
- □ Estimating in original PDF space with PWE as desired response
 - O Selection by LOO-MSE-LR and MNQP algorithm for kernel weights, LOO-MSE-LR+MNQP, (Chen *et al*, 2008)
 - O Need to determine kernel width

Given a realisation sample $D_N = {\mathbf{x}_k}_{k=1}^N$, drawn from unknown density $p(\mathbf{x})$, provide a **kernel density estimate**

$$\hat{p}(\mathbf{x}; \boldsymbol{\beta}_N, \rho) = \sum_{k=1}^N \beta_k K_{\rho}(\mathbf{x}, \mathbf{x}_k)$$

subject to: $\beta_k \ge 0, \ 1 \le k \le N, \text{ and } \boldsymbol{\beta}_N^T \mathbf{1}_N = 1$

 \Box Unsupervised learning, no desired response $y_k = p(\mathbf{x}_k)$ for estimator

□ Parzen window estimate $\hat{p}(\mathbf{x}; \mathbf{1}_N/N, \rho_{\text{Par}})$:

- O Place a "conditional" unimodal PDF $K_{\rho_{\text{Par}}}(\mathbf{x}, \mathbf{x}_k)$ at each \mathbf{x}_k and average over all samples with equal weighting
- **O** Kernel width ρ_{Par} has to be determined via cross validation
- **O** Remarkably simple and accurate but non-sparse

□ View PW estimate as "observation" of true density contaminated by some "observation noise" and use it as **desired response**

$$\hat{p}(\mathbf{x}; \mathbf{1}_N/N, \rho_{\operatorname{Par}}) = \sum_{k=1}^N \beta_k K_{\rho}(\mathbf{x}, \mathbf{x}_k) + \epsilon(\mathbf{x})$$

 \Box Let $y_k = \hat{p}(\mathbf{x}_k; \mathbf{1}_N/N, \rho_{\text{Par}})$ at $\mathbf{x}_k \in D_N$, this model is expressed as

$$y_k = \hat{y}_k + \epsilon(k) = \boldsymbol{\phi}^T(k)\boldsymbol{\beta}_N + \epsilon(k)$$

where $\boldsymbol{\phi}(k) = [K_{k,1} \ K_{k,2} \cdots K_{k,N}]^T$ with $K_{k,i} = K_{\rho}(\mathbf{x}_k, \mathbf{x}_i), \epsilon(k) = \epsilon(\mathbf{x}_k)$

This is standard regression model, which over D_N can be written as

$$\mathbf{y} = \mathbf{\Phi}oldsymbol{eta}_N + oldsymbol{\epsilon}$$

where $\mathbf{\Phi} = [\boldsymbol{\phi}_1 \ \boldsymbol{\phi}_2 \cdots \boldsymbol{\phi}_N]$ with $\boldsymbol{\phi}_k = [K_{1,k} \ K_{2,k} \cdots K_{N,k}]^T$, $\boldsymbol{\epsilon} = [\epsilon(1) \ \epsilon(2) \cdots \epsilon(N)]^T$, $\mathbf{y} = [y_1 \ y_2 \cdots y_N]^T$

 \Box An orthogonal decomposition of regression matrix is $\Phi = WA$, where

 $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \cdots \mathbf{w}_N]$

with orthogonal columns satisfying $\mathbf{w}_i^T \mathbf{w}_j = 0$, if $i \neq j$, and

$$\mathbf{A} = \begin{bmatrix} 1 & a_{1,2} & \cdots & a_{1,N} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{N-1,N} \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

□ **Regression model** can alternatively be expressed as

$$\mathbf{y} = \mathbf{W} \mathbf{g}_N + oldsymbol{\epsilon}$$

where new weight vector $\mathbf{g}_N = [g_1 \ g_2 \cdots g_N]^T$ satisfies $\mathbf{A}\boldsymbol{\beta}_N = \mathbf{g}_N$

WCCI 2008

□ *D*-optimality criterion: select N_s -term SKDE such that determinant of resulting subset design matrix, det $\left(\Phi_{N_s}^T \Phi_{N_s} \right)$, is maximised

□ Note

$$\log\left(\det\left(\mathbf{\Phi}^{T}\mathbf{\Phi}\right)\right) = \log\left(\det\left(\mathbf{W}^{T}\mathbf{W}\right)\right) = \sum_{i=1}^{N}\log\left(\mathbf{w}_{i}^{T}\mathbf{w}_{i}\right)$$

Selected N_s terms corresponding to N_s largest **eigenvalues** of $\Phi^T \Phi$

- $\Box \text{$ **Unsupervised** $procedure depending on } D_N = \{\mathbf{x}_k\}_{k=1}^N \text{ only}$
- □ Fast algorithm of modified Gram-Schmidt orthogonalisation procedure can be used to select N_s kernels using *D*-optimality based OFR
- \square $N_s \ll N$, resulting **very sparse** kernel density estimate

- □ Fast algorithm based on *D*-optimality criterion selects N_s significant kernels, Φ_{N_s}
- □ Kernel weight vector β_{N_s} is calculated using multiplicative nonnegative quadratic programming to solve constrained nonnegative quadratic programming

$$\begin{split} \min_{\boldsymbol{\beta}_{N_s}} \{ \frac{1}{2} \boldsymbol{\beta}_{N_s}^T \mathbf{B}_{N_s} \boldsymbol{\beta}_{N_s} - \mathbf{v}_{N_s}^T \boldsymbol{\beta}_{N_s} \} \\ \text{s.t. } \boldsymbol{\beta}_{N_s}^T \mathbf{1}_{N_s} = 1 \text{ and } \beta_i \geq 0, \ 1 \leq i \leq N_s, \end{split}$$

where $\mathbf{B}_{N_s} = \mathbf{\Phi}_{N_s}^T \mathbf{\Phi}_{N_s}$ is selected subset design matrix, $\mathbf{v}_{N_s} = \mathbf{\Phi}_{N_s}^T \mathbf{y}$

□ Since $N_s \ll N$, MNQP algorithm requires little extra computation and it may set some kernel weights to (near) zero, further reduce model size

☐ For density estimation, N-sample training set for estimation, and test set of $N_{\text{test}} = 10,000$ samples for calculating L_1 test error

$$L_1 = \frac{1}{N_{\text{test}}} \sum_{k=1}^{N_{\text{test}}} \left| p(\mathbf{x}_k) - \hat{p}(\mathbf{x}_k; \boldsymbol{\beta}_{N_s}, \rho) \right|$$

Kullback-Leibler divergence was also approximated for 1 or 2-D cases

$$D_{\mathrm{KL}}(p|\hat{p}) = \int_{\mathcal{R}^m} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{\hat{p}(\mathbf{x}_k; \boldsymbol{\beta}_{N_s}, \rho)} \, d\mathbf{x}$$

Experiment was repeated $N_{\rm run}$ random runs

□ For two-class **classification**, $\hat{p}(\mathbf{x}; \boldsymbol{\beta}_{N_s}, \rho | C0)$ and $\hat{p}(\mathbf{x}; \boldsymbol{\beta}_{N_s}, \rho | C1)$, two class conditional PDF estimates, were estimated, and Bayes' decision

$$\begin{split} \text{if } \hat{p}(\mathbf{x}; \boldsymbol{\beta}_{N_s}, \rho | \text{C0}) &\geq \hat{p}(\mathbf{x}; \boldsymbol{\beta}_{N_s}, \rho | \text{C1}), \quad \mathbf{x} \in \text{C0} \\ \text{else}, \qquad \qquad \mathbf{x} \in \text{C1} \end{split}$$

was then applied to test data set

□ True density was **mixture** of Gaussian and Laplacian distributions

$$p(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-2)^2}{2}} + \frac{0.7}{4}e^{-0.7|x+2|}$$

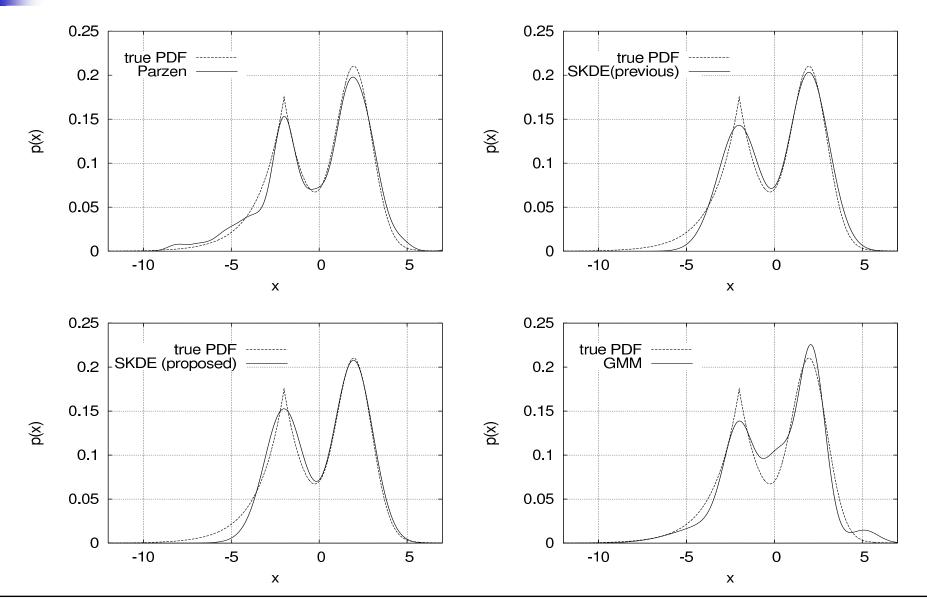
 $N = 100 \text{ and } N_{\text{run}} = 1000$

□ Performance comparison in terms of **KL divergence**, L_1 **test error** and **number of kernels** required, quoted as mean ± standard deviation

estimator	KL divergence	L_1 test error	kernel no.
GMM	$(12.074 \pm 7.885) \times 10^{-2}$	$(2.511 \pm 0.904) \times 10^{-2}$	5 ± 0
PWE	$(8.090 \pm 5.198) \times 10^{-2}$	$(2.011 \pm 0.621) \times 10^{-2}$	100 ± 0
Previous	$(8.657 \pm 5.122) \times 10^{-2}$	$(2.010 \pm 0.649) \times 10^{-2}$	5.2 ± 1.2
proposed	$(8.308 \pm 3.931) \times 10^{-2}$	$(1.945 \pm 0.644) \times 10^{-2}$	4.6 ± 0.8

SKDE: **Previous** (LOO-MSE-LR+MNQP), **proposed** (D-optimality+MNQP)

One-D Example (continue)



School of ECS, University of Southampton, UK

□ True density was **mixture** of five Gaussian distributions

$$p(x,y) = \sum_{i=1}^{5} \frac{1}{10\pi} e^{-\frac{(x-\mu_{i,1})^2}{2}} e^{-\frac{(y-\mu_{i,2})^2}{2}}$$

with means $(\mu_{i,1}, \mu_{i,2})$: (0, -4), (0, -2), (0, 0), (-2, 0) and (-4, 0). N = 500 and $N_{\rm run} = 100$

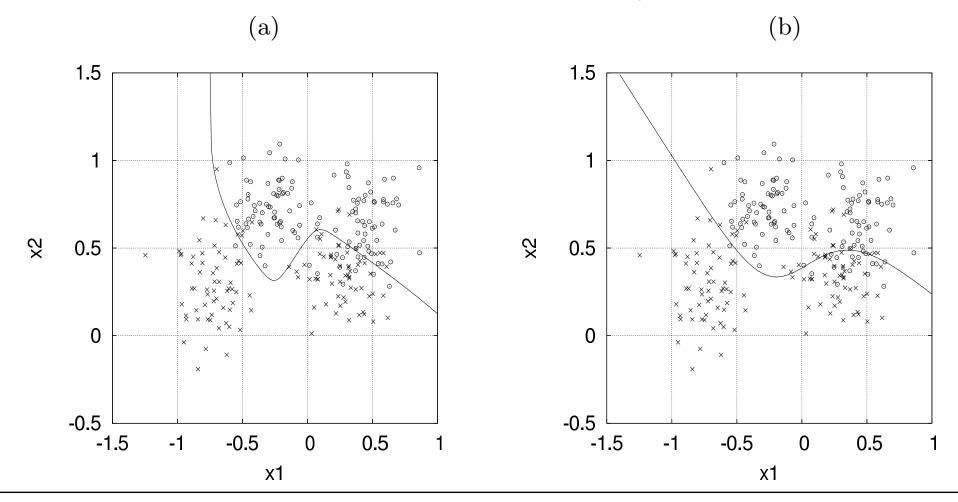
□ Performance comparison in terms of **KL divergence**, L_1 **test error** and **number of kernels** required, quoted as mean ± standard deviation

estimator	KL divergence	L_1 test error	kernel no.
GMM	$(3.392 \pm 0.870) \times 10^{-2}$	$(3.675 \pm 0.672) \times 10^{-3}$	8 ± 0
PWE	$(3.422 \pm 0.548) \times 10^{-2}$	$(3.620 \pm 0.439) \times 10^{-3}$	500 ± 0
Previous	$(3.664 \pm 0.920) \times 10^{-2}$	$(3.610 \pm 0.502) \times 10^{-3}$	13.2 ± 2.9
proposed	$(3.474 \pm 1.298) \times 10^{-2}$	$(3.236 \pm 0.558) \times 10^{-3}$	7.9 ± 0.8

- □ http://www.stats.ox.ac.uk/PRNN/: two-class classification problem in two-dimensional feature space
- □ Training set contained 250 samples with 125 points for each class, test set had 1000 points with 500 samples for each class, and optimal Bayes test error rate based on true probability distribution was 8%
- $\hfill\square$ Performance comparison in terms of test error rate and number of kernels

method	$\hat{p}(ullet C0)$	$\hat{p}(\bullet C1)$	test error rate
\mathbf{GMM}	2 components	2 components	9.0%
\mathbf{PWE}	125 kernels	125 kernels	8.0%
Previous SKDE	6 kernels	5 kernels	8.0%
Proposed SKDE	2 kernels	2 kernels	8.0%

Decision boundary of (a) GMM estimate, and (b) proposed SKD estimate, where circles and crosses represent class-1 and class-0 training data, respectively



School of ECS, University of Southampton, UK

 $\hfill\square$ Density to be estimated was **mixture** of three Gaussian distributions

$$p(\mathbf{x}) = \frac{1}{3} \sum_{i=1}^{3} \frac{1}{(2\pi)^{6/2}} \frac{1}{\det^{1/2} |\mathbf{\Gamma}_i|} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{\Gamma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)}$$

$$\boldsymbol{\mu}_1 = [1.0 \ 1.0 \ 1.0 \ 1.0 \ 1.0 \ 1.0]^T, \ \boldsymbol{\Gamma}_1 = \text{diag}\{1.0, 2.0, 1.0, 2.0, 1.0, 2.0\}$$
$$\boldsymbol{\mu}_2 = [-1.0 \ -1.0 \ -1.0 \ -1.0 \ -1.0 \ -1.0]^T, \ \boldsymbol{\Gamma}_2 = \text{diag}\{2.0, 1.0, 2.0, 1.0, 2.0, 1.0\}$$
$$\boldsymbol{\mu}_3 = [0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0]^T, \ \boldsymbol{\Gamma}_3 = \text{diag}\{2.0, 1.0, 2.0, 1.0\}$$

 \square N = 600, performance comparison over N_{run} = 100 runs

method	L_1 test error	kernel number
GMM estimator	$(1.7428 \pm 0.2852) \times 10^{-5}$	8 ± 0
PW estimator	$(3.5195 \pm 0.1616) \times 10^{-5}$	600 ± 0
Previous SKDE	$(3.1134 \pm 0.5335) \times 10^{-5}$	9.4 ± 1.9
Proposed SKDE	$(2.7823 \pm 0.2271) \times 10^{-5}$	8.4 ± 0.9

- http://ida.first.fhg.de/projects/bench/benchmarks.htm: twoclass three-dimensional Titanic data set
- □ 100 realisations, each realisation contained 150 training samples and 2051 test data samples
- □ Two-class data samples are **imbalanced**, with class-0 training samples approximately twice of class-1 training samples
- $\hfill\square$ Performance comparison in terms of test error rate and number of kernels

method	kernel no. $\hat{p}(\bullet C0) + \hat{p}(\bullet C1)$	test error rate in %
GMM	8 ± 0	23.86 ± 3.22
\mathbf{PWE}	150 ± 0	22.48 ± 0.43
Proposed SKDE	7.8 ± 4.4	22.34 ± 0.34

- □ A regression-based **sparse kernel density estimator** has been proposed
 - O Density learning is converted into **constrained regression** using Parzen window estimate as desired response
 - Unsupervised orthogonal forward regression based on *D*-optimality experimental design to determine structure of kernel density estimate
 - **Multiplicative nonnegative quadratic programming** is used to calculate associated kernel weights
- Effectiveness of proposed sparse kernel density estimator has been demonstrated using simulation

