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Abstract - Based on the structured singular value
theory, a tractable stability measure is derived
for controllers/filters with the finite word length
implementation consideration. The optimal realizations
of controllers/filters are defined as those that maximize
this measure. A sophisticated optimization strategy is
presented to provide an efficient method for solving
this problem based on the linear matrix inequality, and
a numerical example is given to illustrate the design
procedure.

Index Terms - Finite word length, digital control, controller
realization, structured singular value

I. INTRODUCTION

It is well-known that the finite word length (FWL) effects
cannot be ignored in digital system designs [1],[2]. For ex-
ample, Keel and Bhattacharyya [3] showed that the digital
controller obtained by robust control theory exhibits a poor
stability margin with respect to the controller coefficients, if
the design does not take into account the FWL implementa-
tion related uncertainty properly. A filter/control law can be
implemented with different realizations, and these realizations
are equivalent if they are implemented in infinite precision.
However, different realizations possess different degrees of
stability robustness to FWL errors. An FWL design is to
select optimal realizations for the given filter/control law
by optimizing some FWL stability measures, such as the
Frobenius-norm pole sensitivity measure υf [4], the l1-based
stability measure υl [5], the 1-norm pole sensitivity measure
υ1 [6],[7], the stability radius measure υr [8] and the pole
sensitivity sum measure υs [9]. In fact, the FWL stability
measure υ proposed in [10] quantifies the FWL stability
characteristics of a realization best. Unfortunately, except for
few special cases, how to calculate the value of υ for a given
realization is unknown.

Since the computation of the true FWL stability measure υ
is an open problem, various tractable FWL stability measures
mentioned above are adopted in practice to replace υ. The
measures υf , υ1 and υs estimate υ through local lineariza-
tions of the nonlinear relationship between the system matrix
coefficients and system poles, and hence these measures may

not always guarantee to be lower bounds of υ. In other words,
the minimum word length estimated from υf , υ1 or υs may
not always maintain stability. The measure υr is not surely a
lower bound of υ either, because υr only provides a statistical
word length guaranteeing stability with probability no less than
0.9777. The measure υl based on l1 theory [11] is a lower
bound of υ. However, due to the lack of efficient computational
tool for l1 theory, costly numerical methods have to be used
to solve the non-convex problem of maximizing υl in order
to obtain an optimal realization. Structured singular value
(SSV) analysis [12],[13] is an important approach of studying
stability robustness and linear matrix inequality (LMI) tech-
niques are powerful computational tools for SSV analysis. We
propose an SSV-based FWL stability measure υµ, which is
guaranteed to be a lower bound of υ. The optimal realization
problem of optimizing υµ can be easily solved using LMI
toolboxes of MATLAB. A numerical example is given to
illustrate the proposed design method.

II. NOTATIONS AND PRELIMINARIES

Let R denote the field of real numbers, C the field of
complex numbers, MT the transpose of M, M∗ the complex
conjugate transpose of M, and ‖M‖m the maximum absolute
value of all the elements in M. Let σ represent the largest
singular value of a matrix, and ρ the spectral radius of a
matrix. In denotes the n × n identity matrix, while I and 0
represent the identity and zero matrices of proper dimensions,
respectively. � within a matrix represents the symmetric term
of the matrix. A discrete-time system (A,B,C,E) (or the
matrix A) is said stable if ρ(A) < 1. The H∞-norm of this
system is defined as

‖E+C(zI−A)−1B‖∞ �
= sup

z∈C
|z|≥1

σ[E+C(zI−A)−1B]. (1)

Lemma 1: For stable (A,B,C,E) with ‖E + C(zI −
A)−1B‖∞ < 1, there exists a P = PT > 0 such that[

P 0
0 I

]
−

[
A B
C E

]T [
P 0
0 I

] [
A B
C E

]
> 0. (2)

Lemma 2: A real symmetric matrix is partitioned as[
A11 A12

AT
12 A22

]
where A11 and A22 are square. This matrix
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is positive definite if and only if A22 is positive definite and
A11 − A12A−1

22 AT
12 > 0.

The following results of SSV is from [13]. Suppose that
we have a matrix M ∈ Cn×n and two non-negative inte-
gers p and q with p + q ≤ n, which specify the num-
ber of uncertainty blocks of each type. Then the block

structure k(p, q) is a p + q-tuple of positive integers k
�
=

[ k1 · · · kp kp+1 · · · kp+q ]T. This p+q-tuple specifies
the dimensions of the perturbation blocks, and we require
p+q∑
i=1

ki = n in order that these dimensions are compatible with

M. Define

Υ = diag{ζ1Ik1 , · · · , ζpIkp
, ξp+1Ikp+1 , · · · , ξp+qIkp+q

} (3)

and K �
= {Υ : ζi ∈ C, ξj ∈ R}. This determines the set of

allowable perturbations. The SSV, µk(M), of M ∈ Cn×n with
respect to a block structure k(p, q) is defined as

µk(M)
�
=

(
inf

Υ∈K
{σ(Υ) : det(I − ΥM) = 0}

)−1

(4)

with µk(M) = 0 if no Υ ∈ K solves det(I − ΥM) = 0.
Lemma 3: If p = 1 and q = 0, then µk(M) = σ(M).

Except for few special cases, the computation of µk(M) is
still an open problem. However, an upper bound of µk(M)
has been provided, which is easy to compute. Define

Dk
�
= diag{D1, · · · ,Dp,Dp+1, · · · ,Dp+q} (5)

where 0 < Di ∈ Cki×ki and Dk ∈ Cn×n,

Gk
�
= diag{0,Gp+1, · · · ,Gp+q} (6)

where Gi = G∗
i ∈ Cki×ki and Gk ∈ Cn×n, and

αk(M)
�
= inf

D∈Dk
G∈Gk

0<α∈R

{α : M∗DM

+
√−1(GM − M∗G) − α2D < 0}. (7)

Then
µk(M) ≤ αk(M). (8)

When M is a real matrix and the real scalars are not repeated,
αk(M) can be computed easily. Define

DRk
�
=

{
D ∈ Dk : D ∈ Rn×n

}
. (9)

The following lemma is due to Young (Theorem 5.12 in [13]).
Lemma 4: Give a real matrix M ∈ Rn×n and a block

structure k with ki = 1 for i = p + 1, · · · , p + q, i.e. none of
the real scalars are repeated. Then

αk(M) = inf
D∈DRk
0<α∈R

{α : MTDM − α2D < 0}. (10)

Consider a matrix M ∈ Cn×n partitioned as

M =
[
M11 M12

M21 M22

]
(11)

with M11 ∈ Cn1×n1 ,M22 ∈ Cn2×n2 and n1 + n2 = n.
Suppose that we have block structure k1 and the corresponding

perturbation set K1 compatible with M11, and block structure
k2 and the corresponding perturbation set K2 compatible with

M22. Then the block structure kf
�
= [kT

1 kT
2 ]T and the

corresponding perturbation set

Kf
�
=

{
Υ =

[
Υ1

Υ2

]
: Υ1 ∈ K1,Υ2 ∈ K2

}
(12)

is compatible with M. Now given any Υ1 ∈ K1,

Fu(M,Υ1)
�
= M22 + M21(I − Υ1M11)−1Υ1M12 (13)

is called a linear fractional transformation (LFT) [14]. The
main loop theorem for LFTs (Theorem 2.2 in [13]) is stated
in the following lemma.

Lemma 5: Let M ∈ Cn×n and 0 < α ∈ R. Then
µkf

(M) < α if and only if µk1(M11) < α, and for all
Υ1 ∈ K1, σ(Υ1) ≤ 1

α we have µk2(Fu(M,Υ1)) < α.

III. THE FWL STABILITY MEASURE υ

Consider the discrete-time closed-loop control system con-
sisting of a linear time-invariant plant P (z) and a digital
controller C(z). The plant model P (z) is assumed to be
strictly proper with a state-space description{

xP (k + 1) = AP xP (k) + BP u(k)
y(k) = CP xP (k) (14)

where AP ∈ Rr×r, BP ∈ Rr×s and CP ∈ Rt×r. The digital
controller C(z) is described by{

xC(k + 1) = ACxC(k) + BCy(k)
u(k) = CCxC(k) + DCy(k) (15)

with AC ∈ Rm×m, BC ∈ Rm×t, CC ∈ Rs×m and DC ∈
Rs×t. Denote the realization of C(z) as

X
�
=

[
DC CC

BC AC

]
. (16)

Suppose that an initial realization of C(z)

X0
�
=

[
D0

C C0
C

B0
C A0

C

]
(17)

is given by some controller synthesis method. All the realiza-
tions of C(z) form a set

X �
=

{
X : X = X(T) =

[
Is 0
0 T

]
X0

[
It 0
0 T−1

]}
(18)

where the transformation T ∈ Rm×m is an arbitrary non-
singular matrix. The stability of the closed-loop control system
depends on the spectral radius of the closed-loop transition
matrix

A(X) =
[

AP + BP DCCP BP CC

BCCP AC

]

=
[

AP 0
0 0

]
+

[
BP 0
0 Im

]
X

[
CP 0
0 Im

]

�
= M0 + M1XM2. (19)



A discrete-time filter system can be viewed as a trivial case of
the closed-loop system (14) and (15) with P (z) = 0, r = 0
and C(z) representing the filter. Accordingly, the stability of
the filter system depends on A(X) with M0 = 0, M1 = I,
M2 = I and X = AC , i.e. A(X) = AC as well as X = {X :
X = TA0

CT−1}.
All the different realizations X ∈ X have exactly the same

set of poles if they are implemented with infinite precision.
Since the system has been designed to be stable, ρ(A(X)) <
1. When X is implemented in an FWL fixed-point format, it
is perturbed to X+∆. Each element of ∆ is bounded by ±ε,
that is, ‖∆‖m ≤ ε, where ε is the maximum representation
error of the digital processor. With the perturbation ∆, A(X)
is moved to

A(X + ∆) = A(X) + M1∆M2. (20)

If ρ(A(X + ∆)) ≥ 1, the system, designed to be stable,
becomes unstable with the FWL implemented X. It is there-
fore critical to know how robust the closed-loop stability to
the FWL error ∆ for a realization X ∈ X . This means that
we would like to know the largest open “hypercube” in the
perturbation space within which the system remains stable.
The size of this perturbation hypercube quantifies the FWL
stability characteristics of X and is defined by the following
FWL stability measure [10]

υ(X)
�
= inf

∆∈R(s+m)×(t+m)
{‖∆‖m : A(X + ∆) is unstable}.

(21)
From the definition of υ(X), it is easy to see:

Theorem 1: A(X + ∆) is stable if ‖∆‖m < υ(X).
Theorem 1 implies that the larger υ(X) is, the larger FWL

errors the realization X can tolerate. Moreover, as the FWL
stability measure υ(X) is a function of X, we can search for
an “optimal” realization that maximizes υ(X)

Xopt = arg max
X∈X

υ(X). (22)

The difficulty with this approach is that computing explicitly
the value of υ(X) is still an unsolved open problem. In the
next section, an SSV-based FWL stability measure is derived
which not only can quantify the FWL effects on stability but
can also be computed and optimized easily.

IV. AN SSV-BASED FWL STABILITY MEASURE

Denote N
�
= (s + m)(t + m), and revisit (20) by defining[

cT
1 · · · cT

t 0 · · · 0
0 · · · 0 eT

1 · · · eT
m

]T �
=

[
CP 0
0 Im

]
= M2,

(23)


δ11 δ12 · · · δ1,t+m

δ21 δ22 · · · δ2,t+m
...

... · · · ...
δs+m,1 δs+m,2 · · · δs+m,t+m


 �

= ∆. (24)

It is easy to check that

A(X + ∆) = A(X) + BuΛCu (25)

where

Bu
�
= [

t+m︷ ︸︸ ︷
M1 · · · M1] ∈ R(r+m)×N , (26)

Cu
�
=

[
C1 0
0 C2

]
∈ RN×(r+m), (27)

C1
�
= [

s+m︷ ︸︸ ︷
cT
1 · · · cT

1 · · ·
s+m︷ ︸︸ ︷

cT
t · · · cT

t ]T ∈ R(ts+tm)×r, (28)

C2
�
= [

s+m︷ ︸︸ ︷
eT
1 · · · eT

1 · · ·
s+m︷ ︸︸ ︷

eT
m · · · eT

m]T ∈ R(ms+m2)×m, (29)

Λ
�
= diag{δ11, · · · , δs+m,1, δ12, · · · , δs+m,2, · · · ,

δ1,t+m, · · · , δs+m,t+m} ∈ RN×N (30)

with σ(Λ) = ‖∆‖m. For 0 < β ∈ R, denote

H(X, β)
�
=

[
A(X) Bu

βCu 0

]
∈ R(r+m+N)×(r+m+N) (31)

Choose p1 = 1, q1 = 0, block structure k1(p1, q1) = r + m,

p2 = 0, q2 = N and block structure k2(p2, q2) = [

N︷ ︸︸ ︷
1 · · · 1]T.

Clearly,

K1 = {wIr+m : w ∈ C}, (32)

K2 = {Λ ∈ RN×N : Λ is diagonal}, (33)

kf = [r + m

N︷ ︸︸ ︷
1 · · · 1]T. (34)

Thus the perturbation set Kf given in (12) is compatible with
H(X, β) and hence there exists µkf

(H(X, β)).
Theorem 2: υ(X) > β > 0 if and only if µkf

(H(X, β)) <
1.
Space limitation precludes the proof of Theorem 2.

Based on Theorem 2, it is easy to understand the relation-
ship between υ(X) and µkf

(H(X, β)) as
Theorem 3: υ(X) = sup{β ∈ R : β > 0,

µkf
(H(X, β)) < 1}.

Although we have successfully expressed υ(X) in the form
of SSV, the difficulty in computing µkf

(H(X, β)) means that
we have to explore a tractable lower bound of υ(X) with
αkf

(H(X, β)). Define

B �
= {β ∈ R : β > 0, αkf

(H(X, β)) < 1}. (35)

Some properties of B are now discussed. Since H(X, β)
satisfies the conditions of Lemma 4, we have the following
Theorem 4.

Theorem 4: 0 < β ∈ B if and only if ∃D ∈ DRkf
such

that
HT(X, β)DH(X, β) − D < 0. (36)

Due to space limitation, we give the following two theorems
without providing proofs.

Theorem 5: B is not empty.
Theorem 6: Suppose β1 > β2 > 0 and β1 ∈ B, then β2 ∈

B.



Now define

υµ(X)
�
= sup

β∈B
β. (37)

The following results based on (8) and Theorem 1 show that
υµ(X) can be viewed as an FWL stability measure which is
a lower bound of υ(X).

Theorem 7: υ(X) ≥ υµ(X).
Theorem 8: A(X + ∆) is stable if ‖∆‖m < υµ(X).
Through the discussion for B, we know that

B ∪ {υµ} = (0, υµ] (38)

is non-empty and bounded (The fact that υ(X) is finitely
large implies υµ(X) �= ∞). Therefore, given a realization X,
one can compute υµ(X) conveniently based on the following
bisection searching.

Step 1 Determine a precision τ > 0. Initially set a small
enough β1 such that β1 ∈ B and a large enough β2

such that β2 �∈ B.
Step 2 Set β3 = (β1 + β2)/2, and solve the LMI

[
A(X) Bu

β3Cu 0

]T

D
[
A(X) Bu

β3Cu 0

]
− D < 0

0 < D ∈ DRkf

with the LMI toolbox of MATLAB.
Step 3 If the above LMI has a solution, let β1 = β3; if the

LMI has no solution, let β2 = β3.
Step 4 If β2 − β1 < τ , Let υµ(X) = β1 and terminate the

algorithm; if β2 − β1 ≥ τ , go to Step 2.

V. OPTIMAL FWL REALIZATIONS

The SSV-based stability measure υµ(X) is a function of
the realization X. It is of practical importance to find an
“optimal” realization that maximizes υµ(X) over X . The
filter/controller implemented with this realization can tolerate
a maximum FWL error. Since X ∈ X depends on the non-
singular transformation matrix T, the optimal FWL realization
problem is formally defined as

γ
�
= sup

T∈Rm×m

detT �=0

υµ(X(T)). (39)

Combining (35), (37) and (39), we have

γ = sup
T∈Rm×m

detT �=0
0<β∈R

{β : αkf
(H(X(T), β)) < 1}. (40)

We now show how the optimal realization problem (40)
can be solved using the LMI technique. Let 0 < P1 ∈
R(r+m)×(r+m), 0 < P2 ∈ Rr×r, 0 < P3 ∈ Rm×m,
0 < vi ∈ R, i ∈ {1, · · · , N} and T ∈ Rm×m. First define

G1,1 = P1 − A
T
(X0)P1A(X0), (41)

G2,1 = −BT
uP1A(X0), (42)

G2,2 =




[
2Is

TT + T

]
. . . [

2Is

TT + T

]


 ,

(43)

Qj
�
= diag{vj , v(s+m)+j , · · · , v(t−1)(s+m)+j} (44)

with j ∈ {1, · · · , s + m} and

Wj
�
= diag{vt(s+m)+j , v(t+1)(s+m)+j ,

· · · , v(t+m−1)(s+m)+j} (45)

with j ∈ {1, · · · , s + m}. Next introduce the following LMIs[
G1,1 �
G2,1 G2,2

]
>




β2P2

β2P3

BT
uP1Bu +


 v1

. . .
vN





 , (46)




P2 CT
P · · · CT

P

CP Q1
...

. . .
CP Qs+m


 > 0, (47)




P3 TT · · · TT

T W1
...

. . .
T Ws+m


 > 0. (48)

Theorem 9: Suppose that for a positive β ∈ R the LMI
(46)–(48) has a solution, that is, there exist 0 < P1 ∈
R(r+m)×(r+m), 0 < P2 ∈ Rr×r, 0 < P3 ∈ Rm×m,
0 < vi ∈ R, i ∈ {1, · · · , N} and T ∈ Rm×m such that
the LMI (46)–(48) holds. Then αkf

(H(X(T), β)) < 1.
Again the proof of Theorem 9 is omitted owing to space
limitation.

Let us now define

BT
�
= {β ∈ R : β > 0, LMI (46)–(48) has a solution}. (49)

It is easy to prove that BT has the similar properties to those
of B as described in Theorems 5 and 6. Therefore, we can
solve the optimal FWL realization problem in the following
procedure.

Step 1 Determine a precision τ > 0. Initially set a small
enough β1 such that β1 ∈ BT and a large enough β2

such that β2 �∈ BT.
Step 2 Set β3 = (β1 +β2)/2, and solve the LMI (46)–(48).
Step 3 If the above LMI has a solution, set β1 = β3 and

Topt = T; if the LMI has no solution, set β2 = β3.
Step 4 If β2 − β1 < τ , go to Step 5; if β2 − β1 ≥ τ , go to

Step 2.



Step 5 The optimal realization is

Xopt =
[
Is

Topt

]
X0

[
It

T−1
opt

]
. (50)

Use the search algorithm given in Section IV to
compute γ̃ = υµ(Xopt).

Comment: From the proof of Theorem 9 (which was not
included), it can be seen that the algorithm presented here
is slightly conservative and in general γ̃ is less than the true
maximum γ. However, we can obtain a satisfactory realization
Xopt whose υµ(Xopt) at least is larger than sup

β∈BT

β.

VI. A NUMERICAL EXAMPLE

The plant was defined by

AP =


 9.9513e − 1 −9.7260 4.8724e − 3

9.9614e − 4 9.8843e − 1 −9.9614e − 4
6.6995e − 3 1.3373e1 9.9330e − 1


 ,

BP =


 2.4863e − 1

1.2427e − 4
5.5656e − 4


 , CP =


 1

0
0




T

and an initial realization of the controller was given by

X0 =


 1.3512 1.4260e − 2 1.1956

−1 1 0
−1 0 3.3330e − 1


 .

The value of the SSV-based stability measure for this initial
controller realization was computed by the algorithm given
in Section IV as υµ(X0) = 4.3241e − 3. Using the method
presented in Section V, we obtained the optimal FWL trans-
formation matrix

Topt =
[

1.0993e − 1 −1.0858e − 1
2.4484e − 2 1.0785

]

and computed the optimal FWL controller realization as

Xopt =


 1.3512 −1.1460e − 1 1.0970

−1.3490e − 3 9.8538e − 1 6.5647e − 2
−1.1030 1.4523e − 1 3.4792e − 1


 .

The value of the SSV-based stability measure for this optimal
realization was υµ(Xopt) = 1.3128e−2, which is three times
the value for the initial realization.

VII. CONCLUSIONS

Based on the structured singular value theory, a compu-
tationally tractable stability measure has been derived for
the digital controller/filter with FWL implementation con-
siderations. The optimal FWL realization problem for the
controller/filter has been defined based on this SSV-based
stability measure, and an efficient optimization strategy has
been presented to solve this optimization problem using the
LMI technique. A numerical example has been included to
illustrate the proposed FWL design procedure.
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