Joint Design of Coding, Modulation and User-Cooperation for Efficient Wireless Communications

Dr Soon Xin Ng (Michael)

Associate Professor in Telecommunications

Southampton Wireless Group
School of Electronic and Computer Science
University of Southampton
UK

Background and Motivations

Internet of Things in 2020

- **35 Billions** things will be connected to the internet.
- 4 times devices than the population of the whole world.

Important Questions

- Where do we find the bandwidth and battery power?
- How to create an efficient communications system?

Channel Coding

- □ Shannon's communication theory [1] states that reliable communications can be achieved whenever the transmission rate is lower than the channel capacity.
- □ Turbo codes [2], LDPC codes [3] are power-efficient channel coding schemes considered in the various standards.

[1] C. E. Shannon, "A mathematical theory of communication," Bell System Technical Journal, pp. 379–427, 1948.

[2] C. Berrou and A. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo codes," in Proceedings of the International Conference on Communications, (Geneva, Switzerland), pp. 1064–1070, May 1993.

[3] Robert G. Gallager, "Low Density Parity Check Codes", monograph, M.I.T. press 1963.

Coded Modulation

- ☐ Jointly optimized coding and modulation schemes (TCM, BICM) [4] are bandwidth-efficient schemes.
- □ Turbo-Coded Modulation [5] and Turbo-Trellis Coded Modulation (TTCM) [4,6] are both power- and bandwidth-efficient.

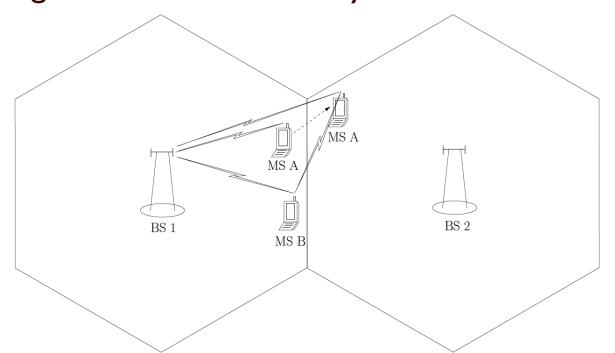
[4] L. Hanzo, T.H. Liew, B.L. Yeap, R.Y.S. Tee and S. X. Ng, "Turbo Coding, Turbo Equalisation and Space-Time Coding: EXIT-Chart-Aided Near-Capacity Designs for Wireless Channels, 2nd Edition", New York, USA: John Wiley, IEEE Press, March, 2011.

[5] T. M. Duman and M. Salehi, "Performance bounds for turbo-coded modulation systems," in *IEEE Transactions on Communications*, vol. 47, no. 4, pp. 511-521, Apr 1999.

[6] P. Robertson and T. Worz, "Bandwidth-efficient turbo trellis-coded modulation using punctured component codes," IEEE Journal on Selected Areas in Communications, vol. 16, pp. 206–218, Feb 1998.

Cooperative Communications

- Multiple-Input Multiple-Output (MIMO) [7] channels exhibit a higher capacity than Single-Input Single-Output (SISO) channels.
- □ BUT small device: correlation of signals.
- □ User Cooperation: independent fading and diversity gain [8].


[7] E. Telatar, "Capacity of multi-antenna Gaussian channels," European Transactions on Telecommunication, vol. 10, pp. 585–595, Nov–Dec 1999.

[8] A. Sendonaris, E. Erkip and B. Aazhang, "User cooperation diversity part I: System description," IEEE Transactions on Communications, vol. 51(11), pp. 1927–1938, 2003.

Cooperative Communications


□ Cooperative communications can increase the capacity, transmission reliability, energy efficiency and coverage area of the overall system.

☐ The LTE-Advanced standard has also considered relaying techniques.

User Cooperation

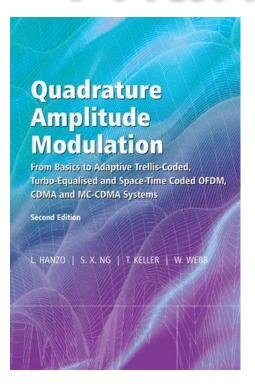
User Cooperation Game

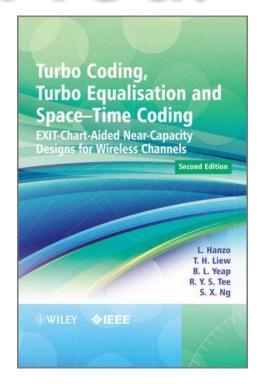
□ None cooperative game [9]:

Primary Users (PUs) compete to get the best Cognitive User (CU) to relay their signals.

□ Cooperative game [10]:

PUs give up any futile competition and cooperatively take turns, one at a time, to access the available CUs.


Convergence to an equilibrium is enforced by the threat of limited-period punishment.


[9] S. Bayat and R.H.Y, Louie and Yonghui Li and B. Vucetic, "Cognitive Radio Relay Networks with Multiple Primary and Secondary Users: Distributed Stable Matching Algorithms for Spectrum Access," IEEE International Conference on Communications (ICC), Page 1-6, June, 2011.

[10] W. Liang, S. X. Ng, J. Feng and L. Hanzo, "Pragmatic Distributed Algorithm for Spectral Access in Cooperative Cognitive Radio Networks", IEEE Transactions on Communications, 2014.

Thank You.

Our related works can be found from the links below:

http://www.wireless.ecs.soton.ac.uk/res/int/cooperation

http://www-mobile.ecs.soton.ac.uk/newcomms/?q=res/int/cooperation