HV subsea cables are frequently laid in trenches at the seabed and buried within local seabed materials, with little consideration of the thermal regime they will either enter or generate. The changing nature of the burial environment will have significant implications for cable performance; the thermal rating of these cables is limited by the ability to balance their heat generation from electrical losses with transfer to the surroundings. Excessive temperatures distort the electric field in DC cable and prematurely degrade insulation and other components leading to early failure. The stability of the installed cable is dependent on the geotechnical properties of the seabed and these may change significantly both during installation and post-installation operation.
With the external cable temperatures approaching 60ðC or higher, the host seawater-saturated sediments will endure thermal conditions at 1 to 2 m depth typically only experienced following ~2 to 3 km of burial at normal geothermal gradients. In the short term this could result in porewater convection and subsequent reduction of bed shear stresses and hence the erodibility of the burial material whilst in the medium to long term they could promote diagenetic reactions between the sediment and porewaters such as mineral recrystallization, significant compaction, and partial induration.
This project will utilise existing and new field data for HV cable routes (high resolution seismic, core logs and attendant geotechnical measurements, CPT information and direct time series of thermal measurements) to understand spatial and temporal variability of the pre- and post-installation physical environment along cable routes on the UK shelf.
The aim of this TSB/EPSRC project is to develop a point-of-care (PoC) nanowire diagnostic system to measure inflammatory biomarkers found in a small droplet of blood, and builds on results from EPSRC Nanotechnology for Healthcare project EP/6061696/1 (Silicon Nanowire Arrays for Viral Infection Markers). The project will develop a low-cost nanowire platform technology with integrated sample processing. Nanowire fabrication will use a novel top-down process and temperatures low enough for large scale manufacture on inexpensive glass or polymer substrates.
Our target application is the diagnosis and management of respiratory diseases, including COPD (chronic obstructive pulmonary disease) and asthma, that are often exacerbated by viral infections. Using a translational approach, we will focus on the detection of a number of clinically relevant protein biomarkers of viral infection and treatment.
*more information to be added*
SOCIAM - Social Machines - will research into pioneering methods of supporting purposeful human interaction on the World Wide Web, of the kind exemplified by phenomena such as Wikipedia and Galaxy Zoo. These collaborations are empowering, as communities identify and solve their own problems, harnessing their commitment, local knowledge and embedded skills, without having to rely on remote experts or governments.
Such interaction is characterised by a new kind of emergent, collective problem solving, in which we see (i) problems solved by very large scale human participation via the Web, (ii) access to, or the ability to generate, large amounts of relevant data using open data standards, (iii) confidence in the quality of the data and (iv) intuitive interfaces.
"Machines" used to be programmed by programmers and used by users. The Web, and the massive participation in it, has dissolved this boundary: we now see configurations of people interacting with content and each other, typified by social web sites. Rather than dividing between the human and machine parts of the collaboration (as computer science has traditionally done), we should draw a line around them and treat each such assembly as a machine in its own right comprising digital and human components - a Social Machine. This crucial transition in thinking acknowledges the reality of today's sociotechnical systems. This view is of an ecosystem not of humans and computers but of co-evolving Social Machines.
The ambition of SOCIAM is to enable us to build social machines that solve the routine tasks of daily life as well as the emergencies. Its aim is to develop the theory and practice so that we can create the next generation of decentralised, data intensive, social machines. Understanding the attributes of the current generation of successful social machines will help us build the next.
The research undertakes four necessary tasks. First, we need to discover how social computing can emerge given that society has to undertake much of the burden of identifying problems, designing solutions and dealing with the complexity of the problem solving. Online scaleable algorithms need to be put to the service of the users. This leads us to the second task, providing seamless access to a Web of Data including user generated data. Third, we need to understand how to make social machines accountable and to build the trust essential to their operation. Fourth, we need to design the interactions between all elements of social machines: between machine and human, between humans mediated by machines, and between machines, humans and the data they use and generate. SOCIAM's work will be empirically grounded by a Social Machines Observatory to track, monitor and classify existing social machines and new ones as they evolve, and act as an early warning facility for disruptive new social machines.
These lines of interlinked research will initially be tested and evaluated in the context of real-world applications in health, transport, policing and the drive towards open data cities (where all public data across an urban area is linked together) in collaboration with SOCIAM's partners. Putting research ideas into the field to encounter unvarnished reality provides a check as to their utility and durability. For example the Open City application will seek to harness citywide participation in shared problems (e.g. with health, transport and policing) exploiting common open data resources.
SOCIAM will undertake a breadth of integrated research, engaging with real application contexts, including the use of our observatory for longitudinal studies, to provide cutting edge theory and practice for social computation and social machines. It will support fundamental research; the creation of a multidisciplinary team; collaboration with industry and government in realization of the research; promote growth and innovation - most importantly - impact in changing the direction of ICT.
Large-scale investment in transmission and distribution networks are planned over the next 10-15 years to meet future demand and changes in power generation. However, it is important that existing assets continue to operate reliably and their health maintained. A research project is considering the increased use of simulation models that could provide accurate prognostics, targeting maintenance and reduce in service failures. Such models could be further refined with parameters obtained from on-line measurements at the asset. It is also important to consider the future development of the research agenda for condition monitoring of power networks and with colleagues from National Grid, PPA Energy and the Universities of Manchester and Strathclyde, the research team are preparing a Position Paper on this subject.
The power transfer capability of high voltage subsea cable systems is limited by thermal considerations, as excessive core temperatures can lead to premature cable failure. Heat generated by the cables must be effectively dissipated away to the ambient environment to prevent potentially damaging elevated temperatures and lower the risks of an expensive asset failure. As interconnector power ratings increase, the importance of understanding the subsea thermal environment also grows, yet direct real time cable temperature measurements are often impossible.
This project will develop models for the evolving thermal environment experienced by buried transmission cables installed in a range of realistic seafloor substrates. We will identify environments of greatest thermal risk and seek to improve cable installation procedures as a result. Benefits will be realised worldwide by enabling better planning and operational management of the subsea interconnectors that will prove vital in realising the MegaGrid.
The use of electrodeposited PdNi/Si Schottky barriers as low power Hydrogen sensors is investigated. The Palladium content of the film causes the Hydrogen molecules to dissociate and be absorbed by the film, changing the metal work function and Schottky barrier current. In this work we show that electrodeposited Pd(Ni)/Si Schottky barriers exhibit very low reverse bias currents compared to evaporated Schottky diodes. The Schottky diodes were fabricated on 0.5ââ¬â1.5 Ohmcm (100) n-type Si by electrodeposition of PdNi followed by evaporation of aluminium contact pads. Electrical measurements at different Hydrogen pressures were performed on back-to-back Schottky diodes in a vacuum chamber using pure nitrogen and a 5% hydrogenââ¬ânitrogen mixture. Very low currents of 1 nA were measured in the absence of hydrogen. Large increases in the currents, up to a factor of 100, were observed upon exposure to different hydrogen partial pressures. A back-to-back configuration forms a device that draws extremely low power when idle. The low idle current, simplicity of the fabrication process and ability to easily integrate with conventional electronics proves the suitability of electrodeposited PdNiââ¬âSi Schottky barriers as low power hydrogen sensors.
Miniaturization of optical components for on-chip integration of electronic and photonic functionalities is one of the new frontiers with the promise of enabling a next generation of integrated optoelectronic circuits. A particularly fascinating prospect is the achievement of an optical analogue of the electronic transistor, which forms the building block of our computers. Our approach involves a nanoscale version of a radiowave antenna, the plasmonic nanoantenna. Plasmonic antennas are designed to overcome the diffraction limit of light and to focus light into a nanometer-sized antenna 'feed' gap.
In our first studies supported by EPSRC we have proposed a variety of devices exploiting hybrid interactions of a nanoantenna with an active substrate. Here, we aim to launch a full-scale investigation of such hybrid antenna devices including various geometries and metal oxide substrates, where the plasmonic antenna will be exploited as a nanoscale sensitizer for the active substrate. Integration of a nanoantenna switches with a nanoelectronic transistor will yield a new class of optoelectronic devices: the nanoantenna MOSFET.
The proposed optically and electrically controlled nanoantenna devices are of enormous interest as a bridge for on-chip control of electrical and optical information. In addition, ultrafast active control of local fields and antenna radiation patterns will enable new applications in nonlinear optics, Raman sensors, and optical quantum information technology.
We recently carried out optical experiments that demonstrated RT spin transport and extraction through Ge for the first time,1 based on structure with Ge grown epitaxial on GaAs and an electrodeposited Ni/Ge Schottky contact. Here, we propose to build upon that work and use the Si-Ge system to its full extent, through delta doping and bandstructure-engineering to maximize spin transparency of the electrical contacts and using strain and low dimensionality to enhance coherent transport in the channel. The culmination of this project should be the exciting prospect of the elusive two-terminal semiconductor spin valve operating at RT and an early demonstration of spin modulation by a gate electrode in such a device.
This project is concerned with developing non-aqueous electrochemical methods and suitably tailored reagents to facilitate spatially selective electrodeposition of binary (e.g. In2(Se,Te)3, Sb2(Se,Te)3, Ge(Se,Te)) and ternary chalcogenide materials (e.g. Ge2Sb2Te5, doped Sb2Te3) for applications in solid-state phase change memory (PCM). The key objectives are to demonstrate successful selective deposition of the target materials inside nano-scale (down to 2 nm) confined cell structures and to establish the effect of down-scaling pore size on the deposition process. Successful electrodeposition of well-defined compound semiconductor alloy compositions of these types will provide a significant new enabling technology which could also have a major impact on the other applications requiring semiconductor alloy deposition on a nano-scale.
This project aims to study and model partial discharge (PD) in a cavity, and induced physical-chemical effects. Among which effects degradation, damage rate, and eventually a life model are the main interests of this project. Different from other PD studies and modelling, this project focuses on detailed physical and chemical phenomenon after each discharge event. Major considerations include the energy spectrum of electron streams impinging into the cavity surface, physical-chemical effects brought on by this process such as polymeric bond breaking, local accumulation of matter, and changes of conductivity. Based on above information, it is hypothesised that damage growth rate can be derived, and a global failure time estimated. During the project, simulation and laboratory studies are carried out simultaneously, aiming at producing comparable and comprehensive result. Simulation studies are based on Matlab and COMSOL modelling, and for laboratory work, insulating materials (XLPE, LDPE, and epoxy) are comprehensively assessed over the life time of the project.